Areas of Polygons for 7th Grade

🏆Practice area of a rectangle

Areas of Polygons

Polygon Definition

In fact, a polygon is any geometric shape made up of sides. In other words, under the umbrella of polygons fall the square, rectangle, parallelogram, trapezoid, and more.

For example, a triangle has 3 sides, every quadrilateral has 4 sides, and so on.

We have already learned to calculate the areas of standard polygons. There are also non-standard polygons, for which there is no specific formula. However, their area can be calculated using two methods:

  • We can divide the area of the required polygon into several areas of polygons that we are familiar with, calculate the areas separately, and then add them together to get the final area.
  • We can try to "complete" the area of the required polygon into another polygon whose area we know how to calculate, and subtract the area we added. This way, we can get the area of the original polygon.

Example

Let's demonstrate this using a simple exercise:

Diagram of a composite shape divided into two rectangles, with dimensions labeled. The left rectangle has dimensions 7 by 4 with an area (A) of 28, and the right rectangle has dimensions 3 by 6 with an area (A) of 18. The diagram illustrates how to calculate areas of composite polygons by dividing them into simpler shapes. Featured in a tutorial on calculating areas of polygons.

Here is a drawing of a polygon.

We need to calculate its area. From the start, we can see that this is not a standard polygon, so we will use the first method to calculate its area. We will divide the polygon as shown in the drawing, and we will get two rectangles.

According to the data shown in the drawing, in the rectangle on the right side we get side lengths of 3 and 6, therefore the area of the rectangle will be 18 (multiplication of the two values). In the rectangle on the left side we get side lengths of 4 and 7, therefore the area of the rectangle will be 28 (multiplication of the two values). Thus, the total area of the polygon will be the sum of the two areas we calculated separately, meaning, 18+28=46.

Start practice

Test yourself on area of a rectangle!

einstein

Calculate the area of the parallelogram based on the data in the figure:

101010444

Practice more now

In 7th grade we focus on learning about several polygons (click on the links for in-depth reading):

How to calculate areas of polygons

The formula for calculating the area of a polygon varies according to the polygon in question. (Click on the titles to read the full articles including examples and practice)

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Calculating Rectangle Area

The formula for calculating the area of a rectangle is: width X length.

S=whS=w\cdot h

A2 - Rectangle area formula

Calculating the area of any triangle

The formula for calculating the area of any triangle: base X height divided by 2

S=Baseh2S={{Base \cdot h}\over 2}

A3 - Triangle Area Formula

Do you know what the answer is?

Calculating the area of a right triangle

In the case of a right triangle's area, it's the same formula, but the height is actually one of the sides

A - area of a new right triangle

Calculating the Area of a Parallelogram

The area of a parallelogram is calculated by multiplying one of its sides by the height drawn to it.

S=Baseh2S={{Base \cdot h}\over 2}

For example in the drawing, you can calculate the area of the parallelogram by multiplying DC by h1 and then dividing by 2, or by multiplying BC by h2 and then dividing by 2

1 - Area of a Parallelogram

Check your understanding

Calculating the Area of a Trapezoid

The formula for calculating the area of a trapezoid is the sum of the two bases times the height divided by 2

S=(Base1+Base2)h2S={{(Base{_1} + Base{_2}) \cdot h}\over 2}

A1 - How do you calculate the area of a new trapezoid

Do you think you will be able to solve it?

Examples with solutions for Areas of Polygons for 7th Grade

Exercise #1

Calculate the area of the trapezoid.

555141414666

Video Solution

Step-by-Step Solution

We use the formula (base+base) multiplied by the height and divided by 2.

Note that we are only provided with one base and it is not possible to determine the size of the other base.

Therefore, the area cannot be calculated.

Answer

Cannot be calculated.

Exercise #2

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #3

Calculate the area of the parallelogram according to the data in the diagram.

101010777AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

We know that ABCD is a parallelogram. According to the properties of parallelograms, each pair of opposite sides are equal and parallel.

Therefore: CD=AB=10 CD=AB=10

We will calculate the area of the parallelogram using the formula of side multiplied by the height drawn from that side, so the area of the parallelogram is equal to:

SABCD=10×7=70cm2 S_{ABCD}=10\times7=70cm^2

Answer

70

Exercise #4

Look at rectangle ABCD below.

Side AB is 10 cm long and side BC is 2.5 cm long.

What is the area of the rectangle?
1010102.52.52.5AAABBBCCCDDD

Video Solution

Step-by-Step Solution

Let's begin by multiplying side AB by side BC

If we insert the known data into the above equation we should obtain the following:

10×2.5=25 10\times2.5=25

Thus the area of rectangle ABCD equals 25.

Answer

25 cm²

Exercise #5

Calculate the area of the triangle below, if possible.

8.58.58.5777

Video Solution

Step-by-Step Solution

The formula to calculate the area of a triangle is:

(side * height corresponding to the side) / 2

Note that in the triangle provided to us, we have the length of the side but not the height.

That is, we do not have enough data to perform the calculation.

Answer

Cannot be calculated

Start practice
Related Subjects