If we add a third line that intersects the two parallel lines (those lines that could never cross), we will obtain various types of angles. To classify these angles we must observe if they are: above the line - the pink part below the line - the light blue part to the right of the line - the red part to the left of the line - the green part
The sum of consecutive angles located between parallel lines is equal to 180. They are called consecutive angles because:
they are on the same side of the transversal
but they are not on the same "level" in relation to the line
Here are some examples of consecutive angles:
The two marked angles are on the same side of the line, but at a different height, therefore, they are consecutive angles. Observe: The angles painted in red in the illustration above are external consecutive angles since they are on the outer side of the parallel lines The internal consecutive angles are on the inner side of the parallel lines:
Angles on Parallel Lines
Now to practice!
Give an example according to the illustration of:
Alternate angles
Corresponding angles
Vertically opposite angles
Adjacent angles
Consecutive interior angles
Consecutive exterior angles
Solution:
Examples of alternate angles 1,8 Both are on different sides and levels, therefore, they are alternate.
Examples of corresponding angles 8,4 Both are on the same side and at the same level or floor, therefore, they are corresponding.
Examples of vertically opposite angles 1,4 Both share the same vertex and are located opposite each other, therefore, they are vertically opposite angles.
Examples of adjacent angles 7,8 Both are on the same line and are located next to each other, therefore, they are adjacent.
Examples of exterior alternate angles 1,7 Both are on the same side, but not at the same level. In addition, they are located on the outside of the line, therefore, they are exterior alternate angles.
Examples of interior alternate angles 3,5 Both are on the same side, but not at the same level. In addition, they are located on the inside of the line, therefore, they are interior alternate angles.
Another exercise:
What are the marked angles called in the illustration?
Solution
The marked angles are alternate They are located on different sides and heights, therefore, they are alternate.
Another exercise:
What are the angles shown in the illustration called?
Solution
The indicated angles are consecutive They are on the same side of the line, but at different heights, therefore, they are external consecutive angles.
Another exercise:
What are the angles shown in the illustration called?
Solution
The indicated angles are adjacent They are on the same blue line and are next to each other, therefore, they are adjacent angles.
Examples and exercises with solutions of right angles and parallels
Exercise #1
Is it possible to have two adjacent angles, one of which is obtuse and the other right?
Video Solution
Step-by-Step Solution
Remember the definition of adjacent angles:
Adjacent angles always complement each other up to one hundred eighty degrees, that is, their sum is 180 degrees.
This situation is impossible since a right angle equals 90 degrees, an obtuse angle is greater than 90 degrees.
Therefore, together their sum will be greater than 180 degrees.
Answer
No
Exercise #2
In which of the diagrams are the angles α,β vertically opposite?
Step-by-Step Solution
Remember the definition of angles opposite by the vertex:
Angles opposite by the vertex are angles whose formation is possible when two lines cross, and they are formed at the point of intersection, one facing the other. The acute angles are equal in size.
The drawing in answer A corresponds to this definition.
Answer
Exercise #3
a is parallel to
b
Determine which of the statements is correct.
Video Solution
Step-by-Step Solution
Let's review the definition of adjacent angles:
Adjacent angles are angles formed where there are two straight lines that intersect. These angles are formed at the point where the intersection occurs, one next to the other, and hence their name.
Now let's review the definition of collateral angles:
Two angles formed when two or more parallel lines are intersected by a third line. The collateral angles are on the same side of the intersecting line and even are at different heights in relation to the parallel line to which they are adjacent.
Therefore, answer C is correct for this definition.
Answer
β,γ Colateralesγ,δ Adjacent
Exercise #4
Identify the angles shown in the diagram below?
Step-by-Step Solution
Let's remember that vertical angles are angles that are formed when two lines intersect. They are are created at the point of intersection and are opposite each other.
Answer
Vertical
Exercise #5
Identify the angle shown in the figure below?
Step-by-Step Solution
Remember that adjacent angles are angles that are formed when two lines intersect one another.
These angles are created at the point of intersection, one adjacent to the other, and that's where their name comes from.
Adjacent angles always complement one another to one hundred and eighty degrees, meaning their sum is 180 degrees.