Area of a right triangle

🏆Practice area of a triangle

Formula to find the area of a right triangle

The area of a right triangle is an important subtopic that is repeated over and over again in exercises that include any right triangle.

It is calculated by multiplying the two sides that form the right angle (called legs) and dividing the result by 2.

A - area of a new right triangle

Start practice

Test yourself on area of a triangle!

einstein

The triangle ABC is given below.
AC = 10 cm

AD = 3 cm

BC = 11.6 cm
What is the area of the triangle?

11.611.611.6101010333AAABBBCCCDDD

Practice more now

Right triangle

Exercise with explanation

For example:

If we have a right triangle whose legs measure 5 cm 5~cm and 6 cm 6~cm and we are asked to find its area, we should multiply 5 5 by 6 6 , giving us a result of 30 and then divide the product by 2 2 .

That is, the area of the given triangle is 15 cm2 15~cm^2

area of the given triangle is 15


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercises to calculate the area of a right triangle

Exercise 1

Homework:

In front of you is a right triangle, calculate its area.

a right triangle, calculate its area

Solution:

Calculate the area of the triangle using the formula for calculating the area of a right triangle.

leg×leg2 \frac{leg\times leg}{2}

ABBC2=862=482=24 \frac{AB\cdot BC}{2}=\frac{8\cdot6}{2}=\frac{48}{2}=24

Answer:

The answer is 24 cm2 24~cm² .


Exercise 2

Homework:

Given the right triangle ADB \triangle ADB

The perimeter of the triangle is equal to 30cm 30\operatorname{cm} .

Given:

AB=15 AB=15

AC=13 AC=13

DC=5 DC=5

CB=4 CB=4

Homework:

Calculate the area of the triangle ABC \triangle~ABC

Given the right triangle ADB

Solution:

Given the perimeter of the triangle Δ ADC Δ~ADC equal to 30cm 30\operatorname{cm} .

From here we can calculate AD AD .

AD+DC+AD=PerimeterΔ ADC AD+DC+AD=PerimeterΔ~ADC

AD+5+13=30 AD+5+13=30

AD+18=30 AD+18=30 /18 -18

AD=12 AD=12

Now we can calculate the area of the triangle Δ ABC Δ~ABC

Pay attention: we are talking about an obtuse triangle therefore its height is AD AD .

We use the formula to calculate the area of the triangle:

height×side2= \frac{height\times side}{2}=

ADBC2=1242=482=24 \frac{AD\cdot BC}{2}=\frac{12\cdot4}{2}=\frac{48}{2}=24

Answer:

The area of the triangle ΔABC ΔABC is equal to 24 cm2 24~cm² .


Do you know what the answer is?

Exercise 3

Homework:

Given the right triangle Δ ABC Δ~ABC

The area of the triangle is equal to 38 cm2 38~cm² , AC=8 AC=8

Find the measure of the leg BC BC

A=38 cm²

Solution:

We will calculate the length of BC BC using the formula for calculating the area of the right triangle:

leg×leg2 \frac{leg\times leg}{2}

ACBC2=8BC2=38 \frac{AC\cdot BC}{2}=\frac{8\cdot BC}{2}=38

We multiply the equation by the common denominator

/ ×2 \times2

Then we divide the equation by the coefficient of BC BC

8\timesBC=76 /:8 :8

BC=9.5 BC=9.5

Answer:

The length of the leg BC BC is equal to 9.5 9.5 centimeters.


Exercise 4

Exercise 4 In front of you is a right triangle ABC

In front of you, there is a right triangle Δ ABC Δ~ABC .

Given that BC=6 BC=6 . The length of the leg AB AB is greater by 3313% 33\frac{1}{3}\% than the length of BD BD.

The area of the triangle  ADC \triangle~ADC is greater by 25% 25\% than the area of the triangle  ABD \triangle~ABD .

Task:

What is the area of the triangle  ABC \triangle~ABC ?

Solution:

To find the measure of the leg AB AB we will use the data that its length is greater by 33.33 33.33 than the length of BD BD .

AB=1.33333BD AB=1.33333\cdot BD

(100100+33.33100=133.33100=1.333)(\frac{100}{100}+\frac{33.33}{100}=\frac{133.33}{100}=1.333)

AB=1.3336=8 AB=1.333\cdot6=8

Now we will calculate the area of the triangle ΔABD ΔABD .

A ΔABD=ABBD2=862=482=24 A~Δ\text{ABD}=\frac{AB\cdot BD}{2}=\frac{8\cdot6}{2}=\frac{48}{2}=24

Answer:

24 cm2 24~cm² .


Check your understanding

Exercise 5

the area of the triangle is 24 cm²

Homework:

Which data in the graph is incorrect?

For the area of the triangle to be 24 cm2 24~cm² , what is the data that should be in place of the error?

Solution:

Explanation: area of the right triangle.

AΔEDF=EDEF2=862=482=24 AΔEDF=\frac{ED\cdot EF}{2}=\frac{8\cdot6}{2}=\frac{48}{2}=24

According to the formula:

leg×leg2 \frac{leg\times leg}{2}

If the area of the triangle can also be calculated from the formula of:

side×side height2 \frac{side\times side~height}{2}

EG×102=24 \frac{EG\times10}{2}=24 /×2 \times2

10EG=48 10EG=48 /:10 :10

EG=4.8 EG=4.8

Answer:

The incorrect data is EG EG .

The length of EG EG should be 4.8cm 4.8\operatorname{cm} .


If you are interested in learning more about other triangle topics, you can enter one of the following articles:

In the blog of Tutorela you will find a variety of articles about mathematics.


Do you think you will be able to solve it?

Examples with solutions for Area of a right triangle

Exercise #1

What is the area of the given triangle?

555999666

Video Solution

Step-by-Step Solution

This question is a bit confusing. We need start by identifying which parts of the data are relevant to us.

Remember the formula for the area of a triangle:

A1- How to find the area of a triangleThe height is a straight line that comes out of an angle and forms a right angle with the opposite side.

In the drawing we have a height of 6.

It goes down to the opposite side whose length is 5.

And therefore, these are the data points that we will use.

We replace in the formula:

6×52=302=15 \frac{6\times5}{2}=\frac{30}{2}=15

Answer

15

Exercise #2

What is the area of the triangle in the drawing?

5557778.68.68.6

Video Solution

Step-by-Step Solution

First, we will identify the data points we need to be able to find the area of the triangle.

the formula for the area of the triangle: height*opposite side / 2

Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.

We multiply the legs and divide by 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Answer

17.5

Exercise #3

The triangle ABC is given below.
AC = 10 cm

AD = 3 cm

BC = 11.6 cm
What is the area of the triangle?

11.611.611.6101010333AAABBBCCCDDD

Video Solution

Step-by-Step Solution

The triangle we are looking at is the large triangle - ABC

The triangle is formed by three sides AB, BC, and CA.

Now let's remember what we need for the calculation of a triangular area:

(side x the height that descends from the side)/2

Therefore, the first thing we must find is a suitable height and side.

We are given the side AC, but there is no descending height, so it is not useful to us.

The side AB is not given,

And so we are left with the side BC, which is given.

From the side BC descends the height AD (the two form a 90-degree angle).

It can be argued that BC is also a height, but if we delve deeper it seems that CD can be a height in the triangle ADC,

and BD is a height in the triangle ADB (both are the sides of a right triangle, therefore they are the height and the side).

As we do not know if the triangle is isosceles or not, it is also not possible to know if CD=DB, or what their ratio is, and this theory fails.

Let's remember again the formula for triangular area and replace the data we have in the formula:

(side* the height that descends from the side)/2

Now we replace the existing data in this formula:

CB×AD2 \frac{CB\times AD}{2}

11.6×32 \frac{11.6\times3}{2}

34.82=17.4 \frac{34.8}{2}=17.4

Answer

17.4

Exercise #4

Calculate the area of the triangle below, if possible.

8.58.58.5777

Video Solution

Step-by-Step Solution

The formula to calculate the area of a triangle is:

(side * height corresponding to the side) / 2

Note that in the triangle provided to us, we have the length of the side but not the height.

That is, we do not have enough data to perform the calculation.

Answer

Cannot be calculated

Exercise #5

Calculate the area of the following triangle:

666777AAABBBCCCEEE

Video Solution

Step-by-Step Solution

The formula for the area of a triangle is

A=hbase2 A = \frac{h\cdot base}{2}

Let's insert the available data into the formula:

(7*6)/2 =

42/2 =

21

Answer

21

Start practice