Center of a Triangle - The Centroid - The Intersection Point of Medians

🏆Practice parts of a triangle

center of the triangle

  1. All three medians in a triangle intersect at a single point called the centroid -
    if two medians intersect at a point inside the triangle, the third median must pass through it as well.
  2. The intersection point of the medians - the centroid - divides each median in a ratio of 2:12:1 where the larger part of the median is closer to the vertex.

Diagram of a rectangle labeled ABCD with a marked midpoint M at the intersection of its diagonals. The rectangle is black with white and orange highlights, showcasing symmetry and geometry properties.

Start practice

Test yourself on parts of a triangle!

einstein

Is DE side in one of the triangles?
AAABBBCCCDDDEEE

Practice more now

Center of a triangle - the intersection point of the medians

The center point of a triangle is also called the intersection point of medians or the meeting point of medians.
Remember - a median is a line segment that extends from a vertex to the opposite side and divides it exactly in half.
Let's see this in the illustration:

Diagram of a rectangle labeled ABCD with a marked midpoint M at the intersection of its diagonals. The rectangle is black with white and orange highlights, showcasing symmetry and geometry properties.

In triangle ABCABC shown here, we can see that the purple point MM represents the intersection point of the three medians in the triangle.
Point MM is also the centroid of the triangle.
Important theorems about the intersection point and the medians in a triangle:

All three medians in a triangle intersect at one point called the centroid of the triangle.

The theorem states that if 22 medians intersect at a certain point, then the third median in the triangle must also pass through the same point and intersect at that point, which is called the centroid.

Let's look at an example:

Diagram of a rectangle labeled ABCD with diagonals intersecting at point M, representing the centroid. Additional markings include equal parts on sides and angles labeled for geometric properties. Black rectangle with orange and blue highlights for clarity.

In triangle ABCABC there are two medians ADAD and BEBE intersecting at point MM.
From this, it follows that if segment CWCW is a median, it must pass through point MM, and conversely, if CECE passes through point MM, we can determine that it is a median to side ABAB
Note: We can determine that if 22 medians in a triangle intersect at a certain point, it will be the centroid.

Let's practice the first theorem about the centroid:
Here is triangle ABCABC

Diagram of a rectangle labeled ABCD with diagonals intersecting at point M, representing the centroid. Additional labels include measurements of 4 units on sides and 5 units on the base, highlighting geometric properties. Black rectangle with orange details for emphasis.

Given that:
CECE is a median in the triangle
BWBW is a median in the triangle
and - ADAD passes through point MM.

It is also known that:

DB=5DB=5
BE=4BE=4
​​​​​​​AW=4​​​​​​​AW=4

  1. Find CDCD
  2. Find the perimeter of the triangle

Solution:

  1. We know that ADAD passes through point MM which is the same point where the two medians CECE and BWBW intersect.
    Therefore, according to the theorem that all three medians intersect at one point, we can determine that ADAD is also a median because if 22 medians meet at a certain point, the third median must pass through it as well.
    We are given that DB=5DB=5 therefore CD=5CD=5 because a median divides the side into two equal parts.
  2. To find the perimeter of the triangle we need to find all sides.

AE=4AE = 4 since CECE is a median
CW=4CW = 4 since BWBW is a median

And we found CDCD in part a.
Therefore:
AB+BC+AC=AB+BC+AC=
8+10+8=268+10+8=26

The perimeter of triangle ABCABC is 2626 cm.

The intersection point of the medians - the centroid - divides each median in a ratio of \(2:1\) where the larger part of the median is closer to the vertex.

Let's look at an example:

Geometric diagram of a rectangle labeled ABCD with diagonals intersecting at point M (centroid). Variables are labeled: 2X, X, 2Y, Y, Z, and 2Z, illustrating proportional relationships. Black background with orange and white text for clarity.

In triangle ABCABC the three medians intersect at point MM.
According to the theorem, point MM divides each median in a ratio of 2:12:1 where the larger part of the median is closer to the vertex.
Thus we can determine that:
AM=2xAM=2x
MD=xMD=x

And:
CM=2YCM=2Y
ME=YME=Y

And:
BM=2ZBM=2Z
MW=ZMW=Z

Now we will practice the second theorem about the centroid:
Here is triangle ABCABC

eometric diagram of a rectangle labeled ABCD with diagonals intersecting at point M (centroid). Points W, M, and E are marked along the diagonals to illustrate geometric properties. Black background with orange and white text for clarity.

Given that:
ADAD is a median
BWBW is a median
and CECE passes through point MM

It is also given that: ME=2ME=2
and BM=5BM=5

Find CMCM and WMWM
Solution:
Since we are given that: ADAD is a median and BWBW is a median and CECE passes through point MM, we can conclude that CECE is a median because if two medians intersect at a certain point, the third median must pass through it.
According to the second theorem which states that the intersection point of the medians divides each median in a ratio of 2:12:1 where the larger part of the median is closer to the vertex, and given that: ME=2ME=2 (the smaller part), we can conclude that:
CM=4CM= 4
Since BM=5BM=5 is the larger part closer to the vertex, we can conclude that WM=2.5WM=2.5

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Examples with solutions for Parts of a Triangle

Exercise #1

Given the following triangle:

Write down the height of the triangle ABC.

AAABBBCCCEEEDDD

Video Solution

Step-by-Step Solution

An altitude in a triangle is the segment that connects the vertex and the opposite side, in such a way that the segment forms a 90-degree angle with the side.

If we look at the image it is clear that the above theorem is true for the line AE. AE not only connects the A vertex with the opposite side. It also crosses BC forming a 90-degree angle. Undoubtedly making AE the altitude.

Answer

AE

Exercise #2

Which of the following is the height in triangle ABC?

AAABBBCCCDDD

Video Solution

Step-by-Step Solution

Let's remember the definition of height of a triangle:

A height is a straight line that descends from the vertex of a triangle and forms a 90-degree angle with the opposite side.

The sides that form a 90-degree angle are sides AB and BC. Therefore, the height is AB.

Answer

AB

Exercise #3

ABC is an isosceles triangle.

AD is the median.

What is the size of angle ADC ∢\text{ADC} ?

AAABBBCCCDDD

Video Solution

Step-by-Step Solution

In an isosceles triangle, the median to the base is also the height to the base.

That is, side AD forms a 90° angle with side BC.

That is, two right triangles are created.

Therefore, angle ADC is equal to 90 degrees.

Answer

90

Exercise #4

Look at the two triangles below. Is EC a side of one of the triangles?

AAABBBCCCDDDEEEFFF

Video Solution

Step-by-Step Solution

Every triangle has 3 sides. First let's go over the triangle on the left side:

Its sides are: AB, BC, and CA.

This means that in this triangle, side EC does not exist.

Let's then look at the triangle on the right side:

Its sides are: ED, EF, and FD.

This means that in this triangle, side EC also does not exist.

Therefore, EC is not a side in either of the triangles.

Answer

No

Exercise #5

Can a triangle have two right angles?

Video Solution

Step-by-Step Solution

The sum of angles in a triangle is 180 degrees. Since two angles of 90 degrees equal 180, a triangle can never have two right angles.

Answer

No

Start practice
Related Subjects