An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
Calculate the size of angle X given that the triangle is equilateral.
Next, we will look at some examples of obtuse triangles:
Homework:
Calculate which is larger
Given that the triangle is an obtuse triangle.
Which angle is larger or ?
Solution:
Since we are given that the triangle is an obtuse triangle, we understand that is not greater than .
In a triangle, there is only one obtuse angle therefore the answer is:
Answer:
Can a right triangle be equilateral?
Choose the appropriate triangle according to the following:
Angle B equals 90 degrees.
Does every right triangle have an angle? The other two angles are?
Given the triangle .
is obtuse.
The sum of the acute angles in the triangle is equal to .
Find the value of angle .
Solution:
Since we know that is obtuse, we are certain that angles and are acute.
This means that we have the information that the sum of the acute angles
The sum of the angles in a triangle is equal to .
Answer:
Given the obtuse triangle .
,
Task:
Is it possible to calculate ?
If so, calculate it.
Solution:
Given that:
We substitute:
Answer: yes, .
Does the diagram show an obtuse triangle?
Does the diagram show an obtuse triangle?
Does the diagram show an obtuse triangle?
Assignment
Which triangle is given in the drawing?
Solution
Since angles and : are both equal to , we know that the opposite sides are also equal, therefore the triangle is isosceles.
Answer
Isosceles triangle
Assignment
Determine which of the following triangles is obtuse, which is acute, and which is right:
Solution
Let's observe triangle and check if it satisfies the Pythagorean theorem, therefore we replace the data we have:
We solve the equation
The sum of the squares of the "perpendicular" is greater than the square of the rest, therefore the triangle is an isosceles triangle.
Let's observe triangle and check if it satisfies the Pythagorean theorem, therefore we replace the data we have:
We solve the equation
The sum of the squares of the "perpendicular" is less than the square of the other, therefore the triangle is obtuse
Let's observe triangle and check if the Pythagorean theorem is satisfied, first we calculate what is the square root of
This is the largest side among the: and we will refer to it as "hypotenuse".
Now we replace the data we have:
We solve the equation
In this triangle, the Pythagorean theorem is satisfied and therefore the triangle is right.
Answer
A: acute angle B: obtuse angle C: right angle
Does the diagram show an obtuse triangle?
Fill in the blanks:
In an isosceles triangle, the angle between two ___ is called the "___ angle".
Given the size of the 3 sides of the triangle, is it an equilateral triangle?
Calculate the size of angle X given that the triangle is equilateral.
Remember that the sum of angles in a triangle is equal to 180.
In an equilateral triangle, all sides and all angles are equal to each other.
Therefore, we will calculate as follows:
We divide both sides by 3:
60
Choose the appropriate triangle according to the following:
Angle B equals 90 degrees.
Let's note in which of the triangles angle B forms a right angle, meaning an angle of 90 degrees.
In answers C+D, we can see that angle B is smaller than 90 degrees.
In answer A, it is equal to 90 degrees.
Given the values of the sides of a triangle, is it a triangle with different sides?
As is known, a scalene triangle is a triangle in which each side has a different length.
According to the given information, this is indeed a triangle where each side has a different length.
Yes
In a right triangle, the sum of the two non-right angles is...?
In a right-angled triangle, there is one angle that equals 90 degrees, and the other two angles sum up to 180 degrees (sum of angles in a triangle)
Therefore, the sum of the two non-right angles is 90 degrees
90 degrees
Is the triangle in the drawing a right triangle?
Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.
Yes