An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
Is the triangle in the drawing a right triangle?
Next, we will look at some examples of obtuse triangles:
Homework:
Calculate which is larger
Given that the triangle is an obtuse triangle.
Which angle is larger or ?
Solution:
Since we are given that the triangle is an obtuse triangle, we understand that is not greater than .
In a triangle, there is only one obtuse angle therefore the answer is:
Answer:
In a right triangle, the sum of the two non-right angles is...?
Given the values of the sides of a triangle, is it a triangle with different sides?
Is the triangle in the drawing a right triangle?
Given the triangle .
is obtuse.
The sum of the acute angles in the triangle is equal to .
Find the value of angle .
Solution:
Since we know that is obtuse, we are certain that angles and are acute.
This means that we have the information that the sum of the acute angles
The sum of the angles in a triangle is equal to .
Answer:
Given the obtuse triangle .
,
Task:
Is it possible to calculate ?
If so, calculate it.
Solution:
Given that:
We substitute:
Answer: yes, .
Choose the appropriate triangle according to the following:
Angle B equals 90 degrees.
In a right triangle, the two sides that form a right angle are called...?
In a right triangle, the side opposite the right angle is called....?
Assignment
Which triangle is given in the drawing?
Solution
Since angles and : are both equal to , we know that the opposite sides are also equal, therefore the triangle is isosceles.
Answer
Isosceles triangle
Assignment
Determine which of the following triangles is obtuse, which is acute, and which is right:
Solution
Let's observe triangle and check if it satisfies the Pythagorean theorem, therefore we replace the data we have:
We solve the equation
The sum of the squares of the "perpendicular" is greater than the square of the rest, therefore the triangle is an isosceles triangle.
Let's observe triangle and check if it satisfies the Pythagorean theorem, therefore we replace the data we have:
We solve the equation
The sum of the squares of the "perpendicular" is less than the square of the other, therefore the triangle is obtuse
Let's observe triangle and check if the Pythagorean theorem is satisfied, first we calculate what is the square root of
This is the largest side among the: and we will refer to it as "hypotenuse".
Now we replace the data we have:
We solve the equation
In this triangle, the Pythagorean theorem is satisfied and therefore the triangle is right.
Answer
A: acute angle B: obtuse angle C: right angle
Fill in the blanks:
In an isosceles triangle, the angle between two ___ is called the "___ angle".
In an isosceles triangle, the angle between ? and ? is the "base angle".
In an isosceles triangle, the third side is called?
Is the triangle in the drawing a right triangle?
Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.
Yes
In a right triangle, the sum of the two non-right angles is...?
In a right-angled triangle, there is one angle that equals 90 degrees, and the other two angles sum up to 180 degrees (sum of angles in a triangle)
Therefore, the sum of the two non-right angles is 90 degrees
90 degrees
Given the values of the sides of a triangle, is it a triangle with different sides?
As is known, a scalene triangle is a triangle in which each side has a different length.
According to the given information, this is indeed a triangle where each side has a different length.
Yes
Is the triangle in the drawing a right triangle?
It can be seen that all angles in the given triangle are less than 90 degrees.
In a right-angled triangle, there needs to be one angle that equals 90 degrees
Since this condition is not met, the triangle is not a right-angled triangle.
No
Choose the appropriate triangle according to the following:
Angle B equals 90 degrees.
Let's note in which of the triangles angle B forms a right angle, meaning an angle of 90 degrees.
In answers C+D, we can see that angle B is smaller than 90 degrees.
In answer A, it is equal to 90 degrees.