Area of a Scalene Triangle

🏆Practice area of a triangle

Area of a scalene triangle

Formula to calculate the area of a scalene triangle:

B1  - Area of the scalene triangle

Start practice

Test yourself on area of a triangle!

einstein

Calculate the area of the following triangle:

6.56.56.5333AAABBBCCCEEE

Practice more now

Area of the scalene triangle

It's very simple to calculate the area of a scalene triangle if we remember the formula and strictly follow the steps. Don't worry, we're here to teach you exactly what to pay attention to—we won't leave you adrift!
First of all, let's look at the formula you need to remember in order to calculate the area of the scalene triangle:

B1  - Area of the scalene triangle


Multiply the height by the base (the side corresponding to that height) and divide by 22.

Pay attention:

Make sure to place in the formula the corresponding height and side. That is, if a certain height and a side that does not form a right angle of 90o 90^o degrees with the used height is placed in the formula, it will be wrong.


Let's see it in an exercise

A2 - Exercise on calculating the area of a scalene triangle

Given the triangle ABCABC
Given that:
DB=6DB=6 Height
AC=7AC = 7
What is the area of the triangle?

Solution:
We will see that the given side ACAC actually forms, with the height, an angle of 90o 90^o  degrees.
After verifying the data, we will go to the formula and place there:
6×72=21\frac{6\times7}{2}=21

The area of the triangle ABCABC is 21cm2 21\operatorname{cm}^2


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Now we will calculate the area of a right triangle

A4 - we will calculate the area of a right triangle

Given the right triangle EFGEFG
Given that:
angle EFG=90EFG = 90
EF=5EF=5
FG=6FG=6
Calculate the area of the triangle.

Solution:
Let's remember that the key to calculating the area of any triangle is to multiply the height
by the corresponding side and then divide that product by22
In a right triangle, we actually already have the height!
We don't need to calculate another height and, in fact, we can afford to use the given height along with the side that forms the 90o 90^o degree angle.

In our exercise: The side is EFEF or FGFG

What conclusion do we reach?
The conclusion is that the formula to calculate the area of a right triangle is the product of the two legs divided by 22Let's put it in the formula and we will get:

6×52=15 \frac{6\times5}{2}=15
The area of the triangle EFGEFG is 15cm2 15cm^2


Now let's move on to calculating the area of an obtuse triangle

Calculating the area of an obtuse triangle is a bit more complicated, but I assure you that once you understand the basic principle, you will be able to calculate the area of an obtuse triangle even in your sleep...
In certain cases, in an obtuse triangle, we will be given a height that is outside the triangle.
As in the following illustration:

4 - Obtuse Triangle

In this illustration, the height AGAG has been drawn outside of the triangle. In reality, if we were to extend the side CBCB (marked in green), it would form a right angle with the height.
How is the area of an obtuse triangle calculated?

Remember the following guidelines and you will do well:

  • In calculating the area of the obtuse triangle, we refer to the actual side length of the triangle and not to its dotted extension.
  • In calculating the area of the obtuse triangle, we refer to the given height (even if it is outside the triangle) and look for the corresponding side, which together with it forms a 90o 90^o degree angle when extended outside the triangle.

Now let's solve an exercise so you can understand it more easily:

Given the triangle ABC \triangle ABC
Given that:
BD=2BD= 2 Height of the triangle
AD=5AD= 5
CD=12CD= 12

A5 - 12,5,2, Exercise on calculating the area of an obtuse triangle

What is the area of the triangle?

Solution:
We observe that the length of the side DB=2DB = 2
and the corresponding side that forms with it a 90o 90^o degree angle (the dotted part outside the triangle) is CACA
If we go back to the first point we needed to remember - we will understand that, to calculate the area, we must only take into account the length of ACAC without its dotted extension.
Therefore, we will see it as 125=7 12-5=7
AC=7AC=7
And now we can safely place the data, according to the basic formula:
7×22=7\frac{7\times2}{2}=7
The area of the triangle ABCABC is 7cm2 7cm^2


Examples and exercises with solutions for calculating the area of a scalene triangle

Exercise #1

Calculate the area of the following triangle:

444555AAABBBCCCEEE

Video Solution

Step-by-Step Solution

The formula for calculating the area of a triangle is:

(the side * the height from the side down to the base) /2

That is:

BC×AE2 \frac{BC\times AE}{2}

We insert the existing data as shown below:

4×52=202=10 \frac{4\times5}{2}=\frac{20}{2}=10

Answer

10

Exercise #2

Calculate the area of the following triangle:

666777AAABBBCCCEEE

Video Solution

Step-by-Step Solution

The formula for the area of a triangle is

A=hbase2 A = \frac{h\cdot base}{2}

Let's insert the available data into the formula:

(7*6)/2 =

42/2 =

21

Answer

21

Exercise #3

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #4

Calculate the area of the triangle ABC using the data in the figure.

121212888999AAABBBCCCDDD

Video Solution

Step-by-Step Solution

First, let's remember the formula for the area of a triangle:

(the side * the height that descends to the side) /2

 

In the question, we have three pieces of data, but one of them is redundant!

We only have one height, the line that forms a 90-degree angle - AD,

The side to which the height descends is CB,

Therefore, we can use them in our calculation:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Answer

36 cm²

Exercise #5

Calculate the area of the triangle below, if possible.

8.58.58.5777

Video Solution

Step-by-Step Solution

The formula to calculate the area of a triangle is:

(side * height corresponding to the side) / 2

Note that in the triangle provided to us, we have the length of the side but not the height.

That is, we do not have enough data to perform the calculation.

Answer

Cannot be calculated

Do you know what the answer is?
Start practice