Formula to calculate the area of an equilateral triangle:
Calculate the area of the following triangle:
Calculating the area of an equilateral triangle is quite simple, you can't get too confused with it, not even a little.
All you need to remember is the formula we will present to you below and apply it to equilateral triangles:
Remember!
In equilateral triangles, the height is also the median and the bisector.
Therefore, if the question only gives the length of the median or the bisector, you can immediately deduce that it is the height you need to place in the formula.
And on top of that, since the triangle is equilateral, you can immediately find the length of the edge (or side) corresponding. Simply compare it with the given edge since they are all equivalent.
Let's practice so we can understand even better how to calculate the area of an equilateral triangle:
Given the triangle
Given that:
Equilateral triangle
Height
What is the area of the triangle?
Solution:
At first glance, we see that we have a height equivalent to and a side equivalent to .
Let's put it in the formula and we will obtain:
Answer:
The area of the triangle is cm2.
Simple and easy, right?
Calculate the area of the following triangle:
Calculate the area of the following triangle:
Calculate the area of the following triangle:
that covers various hypothetical situations that could confuse you on the exam:
Given the equilateral triangle
Given:
What is the area of the triangle ?
Solution:
We know that to calculate the area of the triangle, we need to have the length of the height and the corresponding side with which it forms degrees.
In this exercise, it is not explicitly stated that is the height of the triangle, but we know that: that is, is the median - it crosses the side it touches, dividing it into two equal parts.
Since it is an equilateral triangle, the median is also the height of the triangle, and therefore, we can use it in the formula for calculating the area.
Additional note: If instead of the data that is the median, they had given that it is the bisector , we could also have deduced that it is the height, since in an equilateral triangle, the median, the height, and the bisector coincide.
Therefore, we will note as the height of the triangle.
Now we must find the length of the side
Since it is an equilateral triangle, all sides are equal, so we immediately deduce that
Now let's put it in the formula and we will get:
Answer:
The area of the triangle is cm2.
Calculate the area of the following triangle:
The formula for calculating the area of a triangle is:
(the side * the height from the side down to the base) /2
That is:
We insert the existing data as shown below:
10
Calculate the area of the following triangle:
The formula for the area of a triangle is
Let's insert the available data into the formula:
(7*6)/2 =
42/2 =
21
21
Calculate the area of the right triangle below:
Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,
it can be argued that AB is the height of the triangle.
Hence we can calculate the area as follows:
24 cm²
Calculate the area of the triangle ABC using the data in the figure.
First, let's remember the formula for the area of a triangle:
(the side * the height that descends to the side) /2
In the question, we have three pieces of data, but one of them is redundant!
We only have one height, the line that forms a 90-degree angle - AD,
The side to which the height descends is CB,
Therefore, we can use them in our calculation:
36 cm²
Calculate the area of the triangle below, if possible.
The formula to calculate the area of a triangle is:
(side * height corresponding to the side) / 2
Note that in the triangle provided to us, we have the length of the side but not the height.
That is, we do not have enough data to perform the calculation.
Cannot be calculated
Calculate the area of the following triangle:
Calculate the area of the following triangle:
Calculate the area of the following triangle: