The Center of a Circle

🏆Practice parts of the circle

The center of the circumference belongs to subtopics that make up the topic of the circumference and the circle. We use the concept of the center of the circumference to define the circumference itself, as well as to calculate the radius and diameter of each given circumference.

The center of the circumference, as its name indicates, is a point located in the center of the circumference. It is usually customary to mark this point with the letter O. Indeed, this point is at the same distance from each of the points that make up the circumference.

P1 - The center of the circumference

Start practice

Test yourself on parts of the circle!

einstein

Is there sufficient data to determine that

\( GH=AB \)

MMMAAABBBCCCDDDEEEFFFGGGHHH

Practice more now

If you are interested in this article, you might also be interested in the following articles:

In the Tutorela blog, you will find a variety of articles about mathematics


Below are some examples of different circumferences:

Each of them has a circumference center:

1 - the circumference center


Exercises on the center of the circle:

Exercise 1

Assignment

Given the circle in the figure, O O is the center,

What is the circumference?

Exercise 1- Assignment Given the circle in the figure O is the center

Solution

The radius is a straight line that connects the center of the circle and its circumference according to the figure is 4 cm 4\text{ cm}

Circumference formula

2πr 2\pi r

We replace accordingly based on the data

2π4=8π 2\pi\cdot4=8\pi

Answer

8π 8\pi


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Assignment

Given the circle with center O O

Is it possible to calculate its area?

Exercise 2 - Assignment Given the circle with center O

Solution

The center of the circle is O O

That is, the given line is the diameter.

Diameter = Radius multiplied by 2

2r=10 2r=10

r=5 r=5

We use the formula to calculate the area

A=πr2= A=\pi r^2=

π52=25π \pi5^2=25\pi

Answer

Yes, its area is 25π 25\pi


Exercise 3

Assignment

Given two circles whose center is located at the same point OO

Given the measurements of the figure

What is the area of the orange shape?

3  - Given two circles whose center is located at the same point O

Solution

Dotted area A A

Area of the large circle A1 A_1

Area of the small circle A2 A_2

A=A1A2 A=A_1-A_2

A1=πr12 A_1=\pi r_1^2

r1=2+2=4 r_1=2+2=4

A1=π42=16π A_1=\pi4^2=16\pi

A2=πr2 A_2=\pi r^2

r2=2 r_2=2

A2=π22=4π A_2=\pi2^2=4\pi

A=A1A2=16π4π=12π A=A_1-A_2=16\pi-4\pi=12\pi

Answer

12π 12\pi


Do you know what the answer is?

Exercise 4

Assignment

Given the circle center O O

Inside the circle, there is a square

What is the area of the combined white parts?

We replace

π=3.14 \pi=3.14

Given the circle center  O  Inside the circle, there is a square

Solution

A1=πr2 A_1=\pi r^2

Diameter= Radius multiplied by 2

Diameter =9 =9

Therefore, the radius is equal 4.5 4.5

A1=π(4.5)2=20.25π A_1=\pi\cdot(4.5)^2=20.25\pi

(diagonaldiagonal)2=A2 \frac{(diagonal\cdot diagonal)}{2}=A_2

The formula for the area of a rhombus (the square is also a rhombus). In the square, the diagonals are equal and therefore all the diagonals are 9cm 9\operatorname{cm}

A2=992=812=40.5 A_2=\frac{9\cdot9}{2}=\frac{81}{2}=40.5

A=20.25π40.5= A=20.25\pi-40.5=

=20.253.1440.5= =20.25\cdot3.14-40.5=

23.085cm2 23.085\operatorname{cm}²

Answer

23.085cm2 23.085\operatorname{cm}²


Exercise 5

Assignment

The trapezoid ABCD ABCD is inside the circle, whose center O O

The area of the circle is 16πcm2 16\pi\operatorname{cm}²

What is the area of the trapezoid?

5 - The trapezoid  ABCD is inside the circle whose center  O

Solution

Ao=πr2=16π A_o=\pi r^2=16\pi

We cancel out the 2 pi and take the square root

r=16=4 r=\sqrt{16}=4

DC=DO+OC= DC=DO+OC=

R+R=2R= R+R=2R=

24=8 2\cdot4=8

ABCD=(AB+CD)EO2= ABCD=\frac{(AB+CD)EO}{2}=

(5+8)3.52= \frac{(5+8)3.5}{2}=

133.52=22.75 \frac{13\cdot3.5}{2}=22.75

Answer

22.75cm2 22.75\operatorname{cm}²


Check your understanding

Review Questions

What is the center of a circle?

The center of a circle is the midpoint that is at the same distance from the circumference to that point, it is exactly in the middle of the circumference.

What is the center of a circle


What is the diameter of a circle?

It is the line that touches the circumference from end to end but passes through the center, as shown in the following image.

What is the diameter of a circle


Do you think you will be able to solve it?

What are some elements of the circumference?

The circumference has some lines, which are presented in the image and let's define each one of them:

C (Center): It is the point that is at the center of the circumference

D (Diameter): It is the line that passes through the midpoint of the circumference, that is, it passes through the center and touches the circumference from end to end.

R (Radius): It is half of the diameter, and this line only touches the center at one point of the circumference.

CU (Chord): It is the line that touches the circumference from end to end but does not necessarily pass through the center.

S (Secant): Line that crosses the circumference, as shown in the image:

3 - The circumference has some lines


What happens if the radius is equal to zero?

If the radius in this case is zero, then there is no circumference, since as we mentioned the radius is the line that goes from the center of the circumference to any point on it, and because in this case the radius equals zero, we are not drawing any line and therefore no circle.


Test your knowledge

Examples with solutions for The Center of a Circle

Exercise #1

Which figure shows the radius of a circle?

Step-by-Step Solution

It is a straight line connecting the center of the circle to a point located on the circle itself.

Therefore, the diagram that fits the definition is c.

In diagram a, the line does not pass through the center, and in diagram b, it is a diameter.

Answer

Exercise #2

Which diagram shows a circle with a point marked in the circle and not on the circle?

Step-by-Step Solution

The interpretation of "in a circle" is inside the circle.

In diagrams (a) and (d) the point is on the circle, while in diagram (c) the point is outside of the circle.

Answer

Exercise #3

M is the center of the circle.

Perhaps AB=CD AB=CD

MMMAAABBBCCCDDDEEEFFFGGGHHH

Video Solution

Step-by-Step Solution

CD is a diameter, since it passes through the center of the circle, meaning it is the longest segment in the circle.

AB does not pass through the center of the circle and is not a diameter, therefore it is necessarily shorter.

Therefore:

ABCD AB\ne CD

Answer

No

Exercise #4

There are only 4 radii in a circle.

Step-by-Step Solution

A radius is a straight line that connects the center of the circle with a point on the circle itself.

Therefore, the answer is incorrect, as there are infinite radii.

Answer

False

Exercise #5

Is it possible that the circumference of a circle is 8 meters and its diameter is 4 meters?

Video Solution

Step-by-Step Solution

To calculate, we will use the formula:

P2r=π \frac{P}{2r}=\pi

Pi is the ratio between the circumference of the circle and the diameter of the circle.

The diameter is equal to 2 radii.

Let's substitute the given data into the formula:

84=π \frac{8}{4}=\pi

2π 2\ne\pi

Therefore, this situation is not possible.

Answer

Impossible

Start practice