Right Triangle

🏆Practice types of triangles

Definition of a right triangle

A right triangle is a triangle that has one right angle, meaning an angle of 90 degrees. Based on the fact that the sum of angles in any triangle is 180 degrees, we can conclude that the sum of the two remaining angles in a right triangle is 90 degrees. This means that both angles must be acute (less than 90 degrees).

Right Triangle

Start practice

Test yourself on types of triangles!

Fill in the blanks:

In an isosceles triangle, the angle between two ___ is called the "___ angle".

Practice more now

Here are some examples of right triangles:

Examples of right triangles

Exercise

For example, let's take any right triangle. It is known that one of the angles in this triangle is 45 degrees. We are asked to find the second acute angle in the given triangle.

Since this is a right triangle, meaning one of the angles equals 90 degrees, we can calculate and find that the second acute angle will be equal to 45 degrees. Why? Because it complements the first given acute angle to 90 degrees.

Diagram of a right triangle labeled with angles: B = 90°, C = 45°, and A = ?. The triangle illustrates a problem-solving exercise to determine the missing angle A using the triangle sum theorem. Featured in a tutorial on understanding angles in a right triangle.

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Examples with solutions for Types of Triangles

Exercise #1

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Video Solution

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer

60

Exercise #2

What is the size of each angle in an equilateral triangle?

AAACCCBBB

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify that an equilateral triangle has all sides of equal length, which implies its angles are also equal.
  • Step 2: Utilize the property that the sum of angles in any triangle is 180180^\circ.
  • Step 3: Since each angle is equal in an equilateral triangle, divide the total sum of 180180^\circ by 3.

Now, let's work through each step:
Step 1: In an equilateral triangle, all angles are equal in size.
Step 2: The sum of angles in any triangle is always 180180^\circ.
Step 3: Divide 180180^\circ by 3.

Calculating 180÷3=60180^\circ \div 3 = 60^\circ.

Therefore, the size of each angle in an equilateral triangle is 6060^\circ.

Answer

60

Exercise #3

Which kind of triangle is given in the drawing?

666666666AAABBBCCC

Video Solution

Step-by-Step Solution

As we know that sides AB, BC, and CA are all equal to 6,

All are equal to each other and, therefore, the triangle is equilateral.

Answer

Equilateral triangle

Exercise #4

Given the size of the 3 sides of the triangle, is it an equilateral triangle?

12-X12-X12-XAAABBBCCC2X

Video Solution

Step-by-Step Solution

To determine if the triangle is equilateral, we need to check if all three sides of the triangle are equal.

The given side lengths are 2X2X, 12X12 - X, and 12X12 - X.

For the triangle to be equilateral, we must have the equality:

  • 2X=12X2X = 12 - X

Let's solve this equation:

2Xamp;=12X2X+Xamp;=123Xamp;=12Xamp;=123Xamp;=4 \begin{aligned} 2X &= 12 - X \\ 2X + X &= 12 \\ 3X &= 12 \\ X &= \frac{12}{3} \\ X &= 4 \end{aligned}

Substitute X=4X = 4 back into the expressions for the sides:

  • 2X=2(4)=82X = 2(4) = 8

  • 12X=124=812 - X = 12 - 4 = 8

  • The third side, also 12X=812 - X = 8.

The three calculated side lengths are 88, 88, and 88.

Since all three sides are equal, the triangle is an equilateral triangle.

Therefore, the answer is Yes, the triangle is equilateral.

Answer

Yes

Exercise #5

Is the triangle in the drawing an acute-angled triangle?

Video Solution

Step-by-Step Solution

To determine if the triangle is an acute-angled triangle, we need to understand the nature of its angles. In an acute-angled triangle, all three angles are less than 9090^\circ. However, we do not have explicit angle measures or side lengths shown in the drawing. Instead, we assess the probable nature of the depicted triangle.

Given that an acute-angled triangle must have its largest angle smaller than 9090^\circ, comparison property of triangle sides through Pythagorean type logic suggests that an acute triangle inequality c2<a2+b2c^2 < a^2 + b^2 (for sides aa, bb, and hypotenuse cc) must hold.

In our problem, the depiction ultimately leads us to infer the implied relations among the triangle's angles. The given solution and analysis indicate it does not meet this criterion.

Hence, the triangle in the given drawing is not an acute-angled triangle, confirming the choice: No.

Answer

No

Start practice
Related Subjects