In fact, a polygon is any geometric shape made up of sides. In other words, under the umbrella of polygons fall the square, rectangle, parallelogram, trapezoid, and more.
In fact, a polygon is any geometric shape made up of sides. In other words, under the umbrella of polygons fall the square, rectangle, parallelogram, trapezoid, and more.
For example, a triangle has 3 sides, every quadrilateral has 4 sides, and so on.
We have already learned to calculate the areas of standard polygons. There are also non-standard polygons, for which there is no specific formula. However, their area can be calculated using two methods:
Let's demonstrate this using a simple exercise:
Here is a drawing of a polygon.
We need to calculate its area. From the start, we can see that this is not a standard polygon, so we will use the first method to calculate its area. We will divide the polygon as shown in the drawing, and we will get two rectangles.
According to the data shown in the drawing, in the rectangle on the right side we get side lengths of 3 and 6, therefore the area of the rectangle will be 18 (multiplication of the two values). In the rectangle on the left side we get side lengths of 4 and 7, therefore the area of the rectangle will be 28 (multiplication of the two values). Thus, the total area of the polygon will be the sum of the two areas we calculated separately, meaning, 18+28=46.
Calculate the area of the trapezoid.
Calculate the area of the right triangle below:
Calculate the area of the parallelogram according to the data in the diagram.
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
Calculate the area of the triangle below, if possible.
Calculate the area of the trapezoid.
We use the formula (base+base) multiplied by the height and divided by 2.
Note that we are only provided with one base and it is not possible to determine the size of the other base.
Therefore, the area cannot be calculated.
Cannot be calculated.
Calculate the area of the right triangle below:
Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,
it can be argued that AB is the height of the triangle.
Hence we can calculate the area as follows:
24 cm²
Calculate the area of the parallelogram according to the data in the diagram.
We know that ABCD is a parallelogram. According to the properties of parallelograms, each pair of opposite sides are equal and parallel.
Therefore:
We will calculate the area of the parallelogram using the formula of side multiplied by the height drawn from that side, so the area of the parallelogram is equal to:
70
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
Let's begin by multiplying side AB by side BC
If we insert the known data into the above equation we should obtain the following:
Thus the area of rectangle ABCD equals 25.
25 cm²
Calculate the area of the triangle below, if possible.
The formula to calculate the area of a triangle is:
(side * height corresponding to the side) / 2
Note that in the triangle provided to us, we have the length of the side but not the height.
That is, we do not have enough data to perform the calculation.
Cannot be calculated
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
The width of a rectangle is equal to 15 cm and its length is 3 cm.
Calculate the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Remember that the formula for the area of a rectangle is width times height
We are given that the width of the rectangle is 6
and that the length of the rectangle is 4
Therefore we calculate:
6*4=24
24 cm²
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
We begin by multiplying side AB by side BC
We then substitute the given data and we obtain the following:
Hence the area of rectangle ABCD equals 9
9 cm²
The width of a rectangle is equal to 15 cm and its length is 3 cm.
Calculate the area of the rectangle.
To calculate the area of the rectangle, we multiply the length by the width:
45
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
77
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
10
Given the following rectangle:
Find the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
ABCD is a rectangle.
Given in cm:
AB = 7
BC = 5
Calculate the area of the rectangle.
The trapezoid ABCD is shown below.
Base AB = 6 cm
Base DC = 10 cm
Height (h) = 5 cm
Calculate the area of the trapezoid.
Calculate the area of the following triangle:
Given the following rectangle:
Find the area of the rectangle.
We will use the formula to calculate the area of a rectangle: length times width
54
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
32
ABCD is a rectangle.
Given in cm:
AB = 7
BC = 5
Calculate the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
35
The trapezoid ABCD is shown below.
Base AB = 6 cm
Base DC = 10 cm
Height (h) = 5 cm
Calculate the area of the trapezoid.
First, we need to remind ourselves of how to work out the area of a trapezoid:
Now let's substitute the given data into the formula:
(10+6)*5 =
2
Let's start with the upper part of the equation:
16*5 = 80
80/2 = 40
40 cm²
Calculate the area of the following triangle:
The formula for calculating the area of a triangle is:
(the side * the height from the side down to the base) /2
That is:
We insert the existing data as shown below:
10