Areas of Polygons for 7th Grade - Examples, Exercises and Solutions

Understanding Areas of Polygons for 7th Grade

Complete explanation with examples

Areas of Polygons

Polygon Definition

A polygon defines a geometric shape that is made up of sides. In other words, under the umbrella of polygons fall the following square, rectangle, parallelogram, trapezoid, and many more.

For example, a triangle has 3 sides, every quadrilateral has 4 sides, and so on.

We have already learned to calculate the areas of standard polygons. There are also non-standard polygons, for which there is no specific formula. However, their area of complex shapes can be calculated using two methods:

  • We can divide the area of the required polygon into several areas of polygons that we are familiar with, calculate the areas separately, and then add them together to obtain the final area.
  • We can try to "complete" the area of the required polygon into another polygon whose area we know how to calculate, and the proceed to subtract the area we added. This way, we can obtain the area of the original polygon.

Example

Let's demonstrate this using a simple exercise:

Diagram of a composite shape divided into two rectangles, with dimensions labeled. The left rectangle has dimensions 7 by 4 with an area (A) of 28, and the right rectangle has dimensions 3 by 6 with an area (A) of 18. The diagram illustrates how to calculate areas of composite polygons by dividing them into simpler shapes. Featured in a tutorial on calculating areas of polygons.

Here is a drawing of a polygon.

We need to calculate its area. From the start, we can see that this is not a standard polygon, so we will use the first method to calculate its area. We will divide the polygon as shown in the drawing, and we should obtain two rectangles.

According to the data shown in the drawing, in the rectangle on the right side we obtain the side lengths of 3 and 6, therefore the area of the rectangle will be 18 (multiplication of the two values). In the rectangle on the left side we obtain the side lengths of 4 and 7, therefore the area of the rectangle will be 28 (multiplication of the two values). Thus, the total area of the polygon will be the sum of the two areas we calculated separately, meaning, 18+28=46.

Detailed explanation

Practice Areas of Polygons for 7th Grade

Test your knowledge with 94 quizzes

Look at the rectangle ABCD below.

Given in cm:

AB = 10

BC = 5

Calculate the area of the rectangle.

101010555AAABBBCCCDDD

Examples with solutions for Areas of Polygons for 7th Grade

Step-by-step solutions included
Exercise #1

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer:

24 cm²

Video Solution
Exercise #2

Calculate the area of the triangle ABC using the data in the figure.

121212888999AAABBBCCCDDD

Step-by-Step Solution

First, let's remember the formula for the area of a triangle:

(the side * the height that descends to the side) /2

 

In the question, we have three pieces of data, but one of them is redundant!

We only have one height, the line that forms a 90-degree angle - AD,

The side to which the height descends is CB,

Therefore, we can use them in our calculation:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Answer:

36 cm²

Video Solution
Exercise #3

The trapezoid ABCD is shown below.

AB = 2.5 cm

DC = 4 cm

Height (h) = 6 cm

Calculate the area of the trapezoid.

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Step-by-Step Solution

First, let's remind ourselves of the formula for the area of a trapezoid:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

We substitute the given values into the formula:

(2.5+4)*6 =
6.5*6=
39/2 = 
19.5

Answer:

1912 19\frac{1}{2}

Video Solution
Exercise #4

The trapezoid ABCD is shown below.

Base AB = 6 cm

Base DC = 10 cm

Height (h) = 5 cm

Calculate the area of the trapezoid.

666101010h=5h=5h=5AAABBBCCCDDD

Step-by-Step Solution

First, we need to remind ourselves of how to work out the area of a trapezoid:

Formula for calculating trapezoid area

Now let's substitute the given data into the formula:

(10+6)*5 =
2

Let's start with the upper part of the equation:

16*5 = 80

80/2 = 40

Answer:

40 cm²

Video Solution
Exercise #5

What is the area of the triangle in the drawing?

5557778.68.68.6

Step-by-Step Solution

First, we will identify the data points we need to be able to find the area of the triangle.

the formula for the area of the triangle: height*opposite side / 2

Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.

We multiply the legs and divide by 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Answer:

17.5

Video Solution

More Areas of Polygons for 7th Grade Questions

Continue Your Math Journey

Practice by Question Type

Applying the formula Calculate The Missing Side based on the formula Calculating in two ways Finding Area based off Perimeter and Vice Versa Using additional geometric shapes Using congruence and similarity Using external height Using Pythagoras' theorem Using ratios for calculation Using variables Verifying whether or not the formula is applicable Applying the formula A shape consisting of several shapes (requiring the same formula) Calculate The Missing Side based on the formula Calculation using the diagonal Extended distributive law Finding Area based off Perimeter and Vice Versa Subtraction or addition to a larger shape Using additional geometric shapes Using Pythagoras' theorem Using ratios for calculation Using short multiplication formulas Using variables Worded problems Applying the formula Calculate The Missing Side based on the formula Finding Area based off Perimeter and Vice Versa Subtraction or addition to a larger shape Suggesting options for terms when the formula result is known Using additional geometric shapes Using Pythagoras' theorem Using ratios for calculation Using variables Applying the formula Ascertaining whether or not there are errors in the data Calculate The Missing Side based on the formula Calculating in two ways Extended distributive law Finding Area based off Perimeter and Vice Versa How many times does the shape fit inside of another shape? Identifying and defining elements Subtraction or addition to a larger shape Using additional geometric shapes Using congruence and similarity Using Pythagoras' theorem Using ratios for calculation Using variables Worded problems