How to calculate the area of a triangle using trigonometry?

🏆Practice area of a triangle

How to calculate the area of a triangle using trigonometry?

Throughout geometry studies, which deal with various structures and shapes, you are required to calculate areas and perimeters. Each shape or structure has a different formula through which you can answer the question and calculate the area. Fortunately, there is one formula that can be applied to all triangles, and it can be used to calculate the area of a triangle using trigonometry.

In the field of mathematics, emphasis is also placed on trigonometry, which deals with the study of triangles, their angles, and sides. Every student is required to demonstrate knowledge of triangles (from right triangles to isosceles triangles), and thus also answer the question of how to calculate the area of a triangle using trigonometry.

One formula for all different triangles

Now that you know the formula for calculating the area of a triangle using trigonometry, you can use it in any question where you need to calculate areas in triangles. The formula for calculating the triangle:

Diagram of a triangle labeled ABC with sides AB = 5, AC = 8, and angle Y = 60°. The area formula  𝑆 𝐴𝐵𝐶 = (𝐴𝐵⋅𝐴𝐶⋅sin𝛾)/2 is shown.

Start practice

Test yourself on area of a triangle!

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Practice more now

How to calculate triangle area using trigonometry?

Throughout geometry studies, which deal with different structures and shapes, you are required to calculate areas and perimeters. Each shape or structure has a different formula through which you can answer the question and calculate the area. Fortunately, there is one formula that can be applied to all triangles. It can be used to calculate the area of a triangle using trigonometry.

In mathematics studies, emphasis is also placed on trigonometry, which deals with the study of triangles, their angles and sides. Both students studying in level B math in middle school, and those who take 3 units in high school, are required to demonstrate knowledge of triangles (from right triangles to isosceles triangles), and thus also answer the question of how to calculate the area of a triangle using trigonometry.

One formula for all different triangles

Now that you know the formula for calculating the area of a triangle using trigonometry, you can use it in any question where you need to calculate areas in triangles. The formula for calculating the triangle:

Diagram of a triangle labeled ABC with sides AB = 5, AC = 8, and angle Y = 60°. The area formula  𝑆 𝐴𝐵𝐶 = (𝐴𝐵⋅𝐴𝐶⋅sin𝛾)/2 is shown.

Example:

Given triangle ABCABC and it is known that:

Side ABAB equals 55

Side ACAC equals 88

Angle YY is 6060 degrees.

Let's insert the given values into the formula and we should obtain:

s=ACABsin602s =\frac {AC \cdot AB \cdot \sin60} {2}

In other words:

s=580.8662s =\frac {5\cdot 8\cdot 0.866} {2}

The result obtained is: 17.3217.32.

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Examples with solutions for Area of a Triangle

Exercise #1

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #2

Calculate the area of the following triangle:

4.54.54.5777AAABBBCCCEEE

Video Solution

Step-by-Step Solution

To find the area of the triangle, we will use the formula for the area of a triangle:

Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

From the problem:

  • The length of the base BC BC is given as 7 units.
  • The height from point A A perpendicular to the base BC BC is given as 4.5 units.

Substitute the given values into the area formula:

Area=12×7×4.5 \text{Area} = \frac{1}{2} \times 7 \times 4.5

Calculate the expression step-by-step:

Area=12×31.5 \text{Area} = \frac{1}{2} \times 31.5

Area=15.75 \text{Area} = 15.75

Therefore, the area of the triangle is 15.75 15.75 square units. This corresponds to the given choice: 15.75 15.75 .

Answer

15.75

Exercise #3

What is the area of the triangle in the drawing?

5557778.68.68.6

Video Solution

Step-by-Step Solution

First, we will identify the data points we need to be able to find the area of the triangle.

the formula for the area of the triangle: height*opposite side / 2

Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.

We multiply the legs and divide by 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Answer

17.5

Exercise #4

Calculate the area of the triangle using the data in the figure below.

666888AAABBBCCC

Video Solution

Step-by-Step Solution

To calculate the area of the triangle, we will follow these steps:

  • Identify the base, CB, as 6 units.
  • Identify the height, AC, as 8 units.
  • Apply the area formula for a triangle.

Now, let's work through these steps:

The triangle is a right triangle with base CB=6 CB = 6 units and height AC=8 AC = 8 units.

The area of a triangle is determined using the formula:

Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

Substituting the known values, we have:

Area=12×6×8 \text{Area} = \frac{1}{2} \times 6 \times 8

Perform the multiplication and division:

Area=12×48=24 \text{Area} = \frac{1}{2} \times 48 = 24

Therefore, the area of the triangle is 24 24 square units.

Answer

24

Exercise #5

Calculate the area of the triangle below, if possible.

7.67.67.6444

Video Solution

Step-by-Step Solution

To solve this problem, we begin by analyzing the given triangle in the diagram:

While the triangle graphic suggests some line segments labeled with the values "7.6" and "4", it does not confirm these as directly usable as pure base or height without additional proven inter-contextual relationships establishing perpendicularity or side/unit equivalences.

Without a clear base and perpendicular height value, we cannot apply the triangle's area formula Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} effectively, nor do we have all side lengths for Heron's formula.

Therefore, due to insufficient information that specifically identifies necessary dimensions for area calculations such as clear height to a base or all sides' measures, the area of this triangle cannot be calculated.

The correct answer to the problem, based on insufficient explicit calculable details, is: It cannot be calculated.

Answer

It cannot be calculated.

Start practice
Related Subjects