Sum of Angles in a Polygon

🏆Practice sum and difference of angles

In any polygon, you can calculate the sum of its internal angles using the following formula:

Sum of Angles in a Polygon Equation

Sum of the internal angles of a polygon: =180×(n2) =180\times\left(n-2\right)
while
n= n= The number of edges or sides of the polygon

Steps to find the sum of the internal angles of a polygon:

  1. Count how many sides it has.
  2. Place it in the formula and we will obtain the sum of the internal angles of the polygon.

Important

In the formula, there are parentheses that require us to first perform the operations of subtraction (first we will subtract 2 2 from the number of edges and only then multiply by 180º 180º .

First of all, observe how many sides the given polygon has and write it as =n =n .
Then, note the correct n in the formula and discover the sum of the internal angles.

When it comes to a regular polygon (whose sides are all equal to each other) its angles will also be equal and we can calculate the size of each one of them.
For example, when it comes to a four-sided polygon (like a rectangle, rhombus, trapezoid, kite or diamond), the sum of its angles will be 360º 360º degrees.
However, when it comes to a polygon of 7 7 sides, the sum of its angles will be 900º 900º degrees. 

The sum of the external angles of a polygon will always be 360º 360º degrees.

Start practice

Test yourself on sum and difference of angles!

einstein

In a right triangle, the sum of the two non-right angles is...?

Practice more now

What is a polygon?

A polygon is a geometric figure bounded by edges or sides.
Its name will be designated according to the number of sides it has.
For example, a triangle is a figure that has three sides and a quadrilateral is one that has 4 4 .
Similarly, a pentagon is a figure that has five sides, a hexagon is one that has six, heptagons, octagons, nonagons or enneagons, and decagons also owe their name to the number of edges or sides that make them up.


We can classify polygons into two groups

Convex Polygon and Concave Polygon

In a convex polygon, every segment that connects any two points of the polygon's contour lies solely and exclusively inside the polygon.
In a concave polygon, there will be at least one diagonal segment that connects two points of the polygon and that is entirely outside of it.

In the convex polygon, each and every angle will always be less than 180 degrees, in a concave polygon there will always be at least one angle greater than 180 degrees.

A2 - convex polygon and concave polygon

How is the sum of the internal angles of a polygon calculated?
Regardless of the polygon you have in front of you, whether convex or concave, you can always calculate the sum of its internal angles using the following formula:

Sum of Angles in a Polygon Equation


"The sum of the internal angles of a polygon" =180×(n2) =180\times(n-2)
knowing that
n= n= "the number of sides of the polygon" 


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

An example of how to use the formula

the number of sides of the polygon

Given the following polygon:
How will we discover the sum of its internal angles?
First, we will count how many sides it has.
After counting, we saw that it has 7 7 sides.
We will note it as n=7 n=7
Since n tells us the number of sides,
we will look at the formula that allows us to discover the sum of the internal angles:

(n2)×180= (n-2)\times180=

and we will apply n=7 n=7
(72)180=X (7-2)180=X
Pay attention! In the formula, there are parentheses that indicate we must first perform the subtraction.
Always make sure to work according to the correct order of mathematical operations to avoid mistakes.

Let's solve the exercise:

5×180=900 5\times180=900

The sum of the internal angles of our polygon is 900 900 .


Enrichment Exercise

Observe the following polygon and determine if it is convex or concave.
The polygon is concave. We can draw an external diagonal that connects two points of the polygon.
For example:

the following polygon and determine if it is convex or concave


Example for calculating the sum of the internal angles of a convex polygon:

The formula is true for any type of polygon, but we want to show you that you can use it in the same way for a convex polygon.

polygon 1 2 3 4

We will review step by step:

  1. We will count the number of sides of the polygon and note it as n n .
  2. We will apply the formula.

Solution:
n=4n=4
(42)×180=(4-2)\times 180=
2×180=360 2\times 180=360

The sum of the internal angles of a quadrilateral polygon is 360º 360º degrees.


Do you know what the answer is?

Enrichment Exercise

Given a regular polygon, meaning that all its sides and angles are equal to each other, such as a square or equilateral triangle, we can use the formula to calculate the sum of the internal angles and then divide by the number of angles to find out the measure of each one of them.


Sum of Exterior Angles

Exterior angles are those found between one side of the polygon and the extension of the original side. That is: Pay attention to the fact that the exterior angle is located outside of the polygon and hence
its name derives.

The sum of the exterior angles of a polygon will always be 360º 360º degrees!

A6 - The sum of the exterior angles of a polygon will always be 360 degrees


Check your understanding

Let's look at another example

Given the following polygon

image 3 - Given the following polygon

At first glance, it seems to be a strange polygon that will give us difficulty in calculating the sum of its internal angles.

But do not panic!

The formula to calculate the sum of the internal angles of a polygon (of every polygon, even the ones that look weird) is right here and also the steps we must follow.

So, let's get to work!

First, let's count how many sides this polygon has:

image 2 - how many sides does this polygon have

Recommendation: Write numbers next to each edge to avoid confusion in the count.

Great! Now we know the number of edges our polygon has: n=11 n=11

What remains for us to do is to place the data in the formula (with caution and preserving the order of mathematical operations)

180(112)= 180\left(11-2\right)=

180×9=1620 180\times 9=1620

1620 1620

is the sum of the internal angles of a polygon with 11 11 edges!

Useful information:

all the internal angles of a regular polygon are equal. Therefore, after discovering the sum with the learned formula, you can divide it by the number of angles and find the measure of each one of them.


If you are interested in learning more about other angle topics, you can enter one of the following articles:

In the blog of Tutorela you will find a variety of articles about mathematics.


Exercises on the Sum of the Angles of a Polygon

Exercise 1

Assignment:

Given the square, what is the sum of the angles in the square?

1 - Given the square ABCD

Solution

A square has four angles, each of which is equal to: 90o 90^o , therefore, the sum of the angles in the square is 360o 360^o

Answer

360o 360^o


Do you think you will be able to solve it?

Exercise 2

Assignment

Given the square, what is the sum of the total angles of the four triangles?

2 - Given the square ABCD

Solution

As mentioned, the sum of the angles in each triangle is 180 180

In our case, there are four triangles, so the total amount of the four triangles will be:

180×4=720 180\times4=720

Answer

720 720


Exercise 3

Assignment

Given the square, what is the value of the sum of the angles D1+B+A1 D_1+B+A_1 ?

3 - Given the square ABCD

Solution

In a square, all angles are equal to: 90o 90^o .

\( AD \) is a diagonal of the square, and a diagonal of the square is a bisector

Therefore, the angle D1 D_1 is equal to: 45o 45^o

The same is true for the angle A A since they are equal.

Therefore, the sum of the angles will be

45+90+45= 45+90+45=

90+90=180 90+90=180

Answer

180 180


Test your knowledge

Exercise 4

Assignment

Determine if it is true or false

In a concave kite, the sum of the angles is 180o 180^o

Solution

A concave kite is a quadrilateral, and in a quadrilateral the sum of the angles is 360o360^o

Answer

False


Exercise 5

Assignment

Given the square, what is the value of the sum of the angles D1+B D_1+B ?

4 - Given the square ABCD

Solution

In a square, all angles are equal 90o 90^o

AD AD is a diagonal in a square and a diagonal in a square is the bisector of an angle

Therefore, the angle D1 D_1 is equal to 45o 45^o

Therefore, the sum of the angles D1+B D_1+B is equal to:

45+90=135 45+90=135

Answer

135 135


Do you know what the answer is?

Examples with solutions for Sum of Angles in a Polygon

Exercise #1

In a right triangle, the sum of the two non-right angles is...?

Video Solution

Step-by-Step Solution

In a right-angled triangle, there is one angle that equals 90 degrees, and the other two angles sum up to 180 degrees (sum of angles in a triangle)

Therefore, the sum of the two non-right angles is 90 degrees

90+90=180 90+90=180

Answer

90 degrees

Exercise #2

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Video Solution

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer

60

Exercise #3

Calculate the size of the unmarked angle:

160

Video Solution

Step-by-Step Solution

The unmarked angle is adjacent to an angle of 160 degrees.

Remember: the sum of adjacent angles is 180 degrees.

Therefore, the size of the unknown angle is:

180160=20 180-160=20

Answer

20

Exercise #4

What type of angle is α \alpha ?

αα

Step-by-Step Solution

Remember that an acute angle is smaller than 90 degrees, an obtuse angle is larger than 90 degrees, and a straight angle equals 180 degrees.

Since the lines are perpendicular to each other, the marked angles are right angles each equal to 90 degrees.

Answer

Straight

Exercise #5

Angle A is equal to 30°.
Angle B is equal to 60°.
Angle C is equal to 90°.

Can these angles form a triangle?

Video Solution

Step-by-Step Solution

We must first add the three angles to see if they equal 180 degrees:

30+60+90=180 30+60+90=180

The sum of the angles equals 180, therefore they can form a triangle.

Answer

Yes

Start practice
Related Subjects