Given that the triangle ABC is isosceles,
and inside it we draw EF parallel to CB:
AF=5 AB=17
AG=3 AD=8
AD the height in the triangle
What is the area of the trapezoid EFBC?
Given that the triangle ABC is isosceles,
and inside it we draw EF parallel to CB:
AF=5 AB=17
AG=3 AD=8
AD the height in the triangle
What is the area of the trapezoid EFBC?
To find the area of the trapezoid, you must remember its formula:We will focus on finding the bases.
To find GF we use the Pythagorean theorem: In triangle AFG
We replace:
We isolate GF and solve:
We will do the same process with side DB in triangle ABD:
From here there are two ways to finish the exercise:
Calculate the area of the trapezoid GFBD, prove that it is equal to the trapezoid EGDC and add them up.
Use the data we have revealed so far to find the parts of the trapezoid EFBC and solve.
Let's start by finding the height of GD:
Now we reveal that EF and CB:
This is because in an isosceles triangle, the height divides the base into two equal parts then:
We replace the data in the trapezoid formula:
95