Function, describes a correlation or coincidence between a dependent variable () and an independent variable (). The legitimacy of this relationship between the variables is called the " correspondence rule ".
Function, describes a correlation or coincidence between a dependent variable () and an independent variable (). The legitimacy of this relationship between the variables is called the " correspondence rule ".
The verbal representation of a function expresses the connection between variables verbally, i.e. through a story.
A typical verbal representation of a function can look like this:
A tabular representation of a function is a demonstration of the legitimacy of a function using a table of values (independent variable) and the corresponding values (dependent variable).
In general, a table of values is shown as follows:
Is the given graph a function?
Examples of exercises on verbal and tabular representation of a function
is a function of that corresponds to any value of a number less than it in .
Solve the equation for each of the numbers of represented in the following table and place the correct number in. .
If , then Y will be equal to ____________
If , then Y will equal ___________ .
A value of corresponding to is __________
A value corresponding to is __________
Is the given graph a function?
Determine whether the following table represents a function
Determine whether the data in the following table represent a constant function
Describe in words the relationship between e .
Write down which table represents a function and which table does not represent a function
Determine whether the following table represents a constant function
Determine whether the following table represents a function
Determine whether the following table represents a constant function:
is a function of that corresponds to any value of a number that is times greater than it.
Complete the table of values
is a function of that corresponds to any value of a number times less than it.
Complete the table of values
Determine whether the given graph is a function?
Does the graph below represent a function?
Is the given graph a function?
Complete the following table
Answer the following questions (for each example, write a table of values and draw the graph)
Is the given graph a function?
Is the given graph a function?
Determine whether the following table represents a linear function
The function corresponds to any number that is its root.
Complete the table of values
The function corresponds to any number less than of half the number
Given the following graph, determine which table corresponds to the following table
Given the following graph, determine which table corresponds to the following table
Is the given graph a function?
The function corresponds to any number greater in times the number
What is a function?
A function is a relationship between two variables, the variable which is called the dependent variable, and the variable , which is called the independent variable, between these two variables there is a correspondence rule; that is, for each value of there is only one value of .
What are the ways of representing a relationship?
A function can be represented as follows:
How to represent functions step by step?
Let's see an example of how to represent a function.
Example:
Represent the following function in its different forms
Let be a function of such that a value of corresponds to a number increased by
We already have the function in algebraic form, now we are going to give values to , to find the value of , according to the correspondence rule, and these values we are going to register them in a table:
Now we are going to substitute the values of , to register the value that corresponds to , let's start with
We already know that the algebraic expression of this function is:
Then,
When
When
When
When
When
When
According to this data we are now going to record it in the table
We have represented the function in a table of values.
Finally we are going to represent these values in a graph:
We are going to find the pairs of coordinates in the Cartesian plane, and join each point as follows.
We can see that the function in graphical form is a linear function because it forms a straight line.
If you are interested in this article you may also be interested in the following articles:
Graphical representation of a function
Algebraic representation of a function
Numerical value assignment in a function
Growing and decreasing intervals of a function
In Tutorela you will find a variety of articles with interesting explanations about mathematics.
Is the given graph a function?
Determine whether the following table represents a function
Determine whether the data in the following table represent a constant function
Determine whether the data in the following table represent a constant function
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a non-constant change in Y values - sometimes increasing by 1 and sometimes by 4
Therefore, according to the rule, the table does not describe a function
No
Determine whether the following table represents a function
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The pairs given are:
,
,
,
,
.
Step 2: For each input value , we check its corresponding output :
Step 3: Since each value has exactly one corresponding value, the table represents a function.
Yes
Yes
Is the given graph a function?
To determine if the given graph represents a function, we use the vertical line test: if any vertical line intersects the graph at more than one point, the graph is not a function.
Let's apply this test to the graph:
Upon examining the graph, we observe that there are several vertical lines that intersect the graph at multiple points, particularly in areas with loops or overlapping curves. This indicates that at those -values, there are multiple -values corresponding to them.
Since there exist such vertical lines, according to the vertical line test, the graph does not represent a function.
Thus, the solution to this problem is that the given graph is not a function.
No
Is the given graph a function?
To determine whether the graph represents a function, we apply the Vertical Line Test. Here are the steps we follow:
Step 1: On evaluating the given graph carefully, there is a notable presence of a vertical line passing through multiple y-values. Specifically, the vertical line goes from to at .
Step 2: Since this vertical line at intersects the graph at an infinite number of points, it fails the Vertical Line Test.
Therefore, the graph does not represent a function. According to our analysis and the Vertical Line Test, the correct answer is No.
No
Determine whether the following table represents a constant function
To determine if the table represents a constant function, we need to examine the Y-values corresponding to the X-values given in the table.
Since the Y-values (2, 4, and 7) are not the same, the function is not constant.
Thus, the table does not represent a constant function. The correct choice is: No.
No