Function, describes a correlation or coincidence between a dependent variable () and an independent variable (). The legitimacy of this relationship between the variables is called the " correspondence rule ".
Function, describes a correlation or coincidence between a dependent variable () and an independent variable (). The legitimacy of this relationship between the variables is called the " correspondence rule ".
The verbal representation of a function expresses the connection between variables verbally, i.e. through a story.
A typical verbal representation of a function can look like this:
A tabular representation of a function is a demonstration of the legitimacy of a function using a table of values (independent variable) and the corresponding values (dependent variable).
In general, a table of values is shown as follows:
Determine whether the following table represents a function
Determine whether the data in the following table represent a constant function
Determine whether the following table represents a constant function:
Is the given graph a function?
Determine whether the given graph is a function?
Determine whether the following table represents a function
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a constant change in Y values, meaning an increase of 3
Therefore, according to the rule, the table describes a function.
Yes
Determine whether the data in the following table represent a constant function
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a non-constant change in Y values - sometimes increasing by 1 and sometimes by 4
Therefore, according to the rule, the table does not describe a function
No
Determine whether the following table represents a constant function:
It is important to remember that a constant function describes a situation where, as the X value increases, the Y value remains constant.
In the table, we can see that there is a constant change in the X values, specifically an increase of 2, while the Y value remains constant.
Therefore, the table does indeed describe a constant function.
Yes, it does
Is the given graph a function?
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
Let's note that in the graph:
In other words, there are two values for the same number.
Therefore, the graph is not a function.
No
Determine whether the given graph is a function?
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
We should note that for every X value found on the graph, there is one and only one corresponding Y value.
Therefore, the graph is indeed a function.
Yes
Does the graph below represent a function?
Which of the following equations corresponds to the function represented in the graph?
Which of the following equations corresponds to the function represented in the table?
Is the given graph a function?
Determine whether the following table represents a function
Does the graph below represent a function?
It is important to remember that a function is an equation that assigns to each value in domain only one value in range .
Since we can see that for every value found on the graph there is only one corresponding value, the graph is indeed a function.
Yes
Which of the following equations corresponds to the function represented in the graph?
Let's use the below formula in order to find the slope:
We begin by inserting the known data from the graph into the formula:
We then substitute the point and slope into the line equation:
Lastly we combine the like terms:
Therefore, the equation will be:
Which of the following equations corresponds to the function represented in the table?
We will begin by using the formula for finding slope:
First let's take the points:
Next we'll substitute the point and slope into the line equation:
Lastly we'll combine like terms:
Therefore, the equation will be:
Is the given graph a function?
No
Determine whether the following table represents a function
No
Determine whether the following table represents a function
Is the given graph a function?
Is the given graph a function?
Is the given graph a function?
Determine whether the following table represents a function
Determine whether the following table represents a function
Yes
Is the given graph a function?
Yes
Is the given graph a function?
Yes
Is the given graph a function?
No
Determine whether the following table represents a function
No