Indefinite integral

🏆Practice domain of a function

An integral can be defined for all values (that is, for all X X ). An example of this type of function is the polynomial - which we will study in the coming years.

However, there are integrals that are not defined for all values (all X X ), since if we place certain X X or a certain range of values of X X we will receive an expression considered "invalid" in mathematics. The values of X X for which integration is undefined cause the discontinuity of a function.

integrals that are not defined for all values

Start practice

Test yourself on domain of a function!

\( 2x+\frac{6}{x}=18 \)

What is the domain of the above equation?

Practice more now
  • An example of this is a function with a fraction with values X X in the denominator.
  • For example 1x1\over x
    According to mathematical rules, the denominator of a fraction cannot be zero since it is not possible to divide by zero. Therefore, when there is a possibility that the denominator equals zero, the integral cannot be defined for the values of X X that could cause the denominator to be zero.
Indefinite Integral
  • Another example is a square root function. For example
    According to the algebraic rules, the expression under the square root cannot be negative, that is, it must be positive or zero, but in no way negative. Therefore, The integral will be undefined for a range of values of X X that cause the expression under the square root to be negative.f(x)=x2x5f(x)=\sqrt{x^2-x-5}
Example of a negative square root function


Examples and exercises with solutions of indefinite integral

Exercise #1

Look at the following function:

2x+29x+6 \frac{2x+2}{9x+6}

What is the domain of the function?

Video Solution

Step-by-Step Solution

To solve this problem, we will determine the domain of the rational function by following these steps:

  • Step 1: Identify the denominator of the function, which is 9x+6 9x + 6 .
  • Step 2: Set the denominator equal to zero to find values of x x that need to be excluded from the domain: 9x+6=0 9x + 6 = 0 .
  • Step 3: Solve the equation 9x+6=0 9x + 6 = 0 for x x .
  • Step 4: To solve, subtract 6 from both sides to get 9x=6 9x = -6 .
  • Step 5: Divide each side by 9 to solve for x x , resulting in x=23 x = -\frac{2}{3} .
  • Step 6: The domain of the function excludes the value x=23 x = -\frac{2}{3} since it makes the denominator zero.

Thus, the domain of the given function is all real numbers except x=23 x = -\frac{2}{3} , expressed as x23 x \ne -\frac{2}{3} .

Therefore, the correct choice for the domain is: x23 x\ne-\frac{2}{3} .

Answer

x23 x\ne-\frac{2}{3}

Exercise #2

Given the following function:

5x2x \frac{5-x}{2-x}

Does the function have a domain? If so, what is it?

Video Solution

Step-by-Step Solution

To determine the domain of the function 5x2x \frac{5-x}{2-x} , we need to identify and exclude any values of x x that make the function undefined. This occurs when the denominator equals zero.

  • Step 1: Set the denominator equal to zero:
    2x=0 2-x = 0
  • Step 2: Solve for x x :
    Adding x x to both sides gives 2=x 2 = x . Hence, x=2 x = 2 .

This means that the function is undefined when x=2 x = 2 . Therefore, the domain of the function consists of all real numbers except x=2 x = 2 .

Thus, the domain is: x2 x \ne 2 .

The correct answer choice is:

Yes, x2 x\ne2

Answer

Yes, x2 x\ne2

Exercise #3

Given the following function:

2421x7 \frac{24}{21x-7}

What is the domain of the function?

Video Solution

Step-by-Step Solution

To determine the domain of the function 2421x7 \frac{24}{21x-7} , we need to ensure that the denominator is not equal to zero.

Step 1: Set the denominator equal to zero and solve for x x :

  • 21x7=0 21x - 7 = 0

  • 21x=7 21x = 7

  • x=721 x = \frac{7}{21}

  • x=13 x = \frac{1}{3}

The function is undefined when x=13 x = \frac{1}{3} because it would cause division by zero.

Step 2: The domain of the function is all real numbers except x=13 x = \frac{1}{3} .

Therefore, the domain of the function is all x x such that x13 x \neq \frac{1}{3} .

Thus, the correct answer is x13 \boxed{ x\ne\frac{1}{3}} .

Answer

x13 x\ne\frac{1}{3}

Exercise #4

22(2x1)=30 22(\frac{2}{x}-1)=30

What is the domain of the equation above?

Video Solution

Step-by-Step Solution

To find the domain of the given function 22(2x1)=30 22\left(\frac{2}{x} - 1\right) = 30 , follow these steps:

  • Identify critical terms: The term 2x\frac{2}{x} is undefined when x=0 x = 0 because division by zero is undefined.
  • We need to exclude x=0 x = 0 from the domain to ensure the function remains defined.
  • The correct domain for the equation is all real numbers except x=0 x = 0 .

Thus, the domain of the equation is x0 x \neq 0 .

Therefore, the solution to the problem is x0 x \neq 0 .

Answer

x≠0

Exercise #5

2x3=4x 2x-3=\frac{4}{x}

What is the domain of the exercise?

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the fraction's denominator.

  • Step 2: Determine where this denominator equals zero.

  • Step 3: Exclude this value from the domain.

Now, let's work through each step:

Step 1: The given equation is 2x3=4x 2x - 3 = \frac{4}{x} . Notice that the fraction 4x\frac{4}{x} has a denominator of xx.

Step 2: Set the denominator equal to zero to determine where it is undefined.

xamp;=0 \begin{aligned} x &= 0 \end{aligned}

Step 3: Since the expression is undefined at x=0x = 0, we must exclude this value from the domain.

Therefore, the domain of the expression is all real numbers except 0, formally stated as x0 x \neq 0 .

The correct solution to the problem is: x ≠ 0.

Answer

x≠0

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice