Indefinite integral

🏆Practice domain of a function

An integral can be defined for all values (that is, for all X X ). An example of this type of function is the polynomial - which we will study in the coming years.

However, there are integrals that are not defined for all values (all X X ), since if we place certain X X or a certain range of values of X X we will receive an expression considered "invalid" in mathematics. The values of X X for which integration is undefined cause the discontinuity of a function.

integrals that are not defined for all values

Start practice

Test yourself on domain of a function!

einstein

\( \frac{6}{x+5}=1 \)

What is the field of application of the equation?

Practice more now
  • An example of this is a function with a fraction with values X X in the denominator.
  • For example 1x1\over x
    According to mathematical rules, the denominator of a fraction cannot be zero since it is not possible to divide by zero. Therefore, when there is a possibility that the denominator equals zero, the integral cannot be defined for the values of X X that could cause the denominator to be zero.
Indefinite Integral
  • Another example is a square root function. For example
    According to the algebraic rules, the expression under the square root cannot be negative, that is, it must be positive or zero, but in no way negative. Therefore, The integral will be undefined for a range of values of X X that cause the expression under the square root to be negative.f(x)=x2x5f(x)=\sqrt{x^2-x-5}
Example of a negative square root function


Examples and exercises with solutions of indefinite integral

Exercise #1

6x+5=1 \frac{6}{x+5}=1

What is the field of application of the equation?

Video Solution

Step-by-Step Solution

To solve this problem, we will determine the domain, or field of application, of the equation 6x+5=1 \frac{6}{x+5} = 1 .

Step-by-step solution:

  • Step 1: Identify the denominator. In the given equation, the denominator is x+5 x+5 .
  • Step 2: Determine when the denominator is zero. Solve for x x by setting x+5=0 x+5 = 0 .
  • Step 3: Solve the equation: x+5=0 x+5 = 0 gives x=5 x = -5 .
  • Step 4: Exclude this value from the domain. The domain is all real numbers except x=5 x = -5 .

Therefore, the field of application of the equation is all real numbers except where x=5 x = -5 .

Thus, the domain is x5 x \neq -5 .

Answer

x5 x\operatorname{\ne}-5

Exercise #2

x+y:32x+6=4 \frac{x+y:3}{2x+6}=4

What is the field of application of the equation?

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps to find the domain:

  • Step 1: Recognize that the expression x+y:32x+6=4\frac{x+y:3}{2x+6}=4 involves a fraction. The denominator 2x+62x + 6 must not be zero, as division by zero is undefined.
  • Step 2: Set the denominator equal to zero and solve for xx to find the values that must be excluded: 2x+6=02x + 6 = 0.
  • Step 3: Solve 2x+6=02x + 6 = 0:
    • 2x+6=02x + 6 = 0
    • 2x=62x = -6
    • x=3x = -3
  • Step 4: Conclude that the domain of the function excludes x=3x = -3, meaning x3x \neq -3.

Thus, the domain of the given expression is all real numbers except x=3x = -3. This translates to:

x3 x\operatorname{\ne}-3

Answer

x3 x\operatorname{\ne}-3

Exercise #3

3x:4y+6=6 \frac{3x:4}{y+6}=6

What is the field of application of the equation?

Video Solution

Step-by-Step Solution

To determine the field of application of the equation 3x:4y+6=6\frac{3x:4}{y+6}=6, we must identify values of yy for which the equation is defined.

  • The denominator of the given expression is y+6y + 6. In order for the expression to be defined, the denominator cannot be zero.
  • This leads us to solve the equation y+6=0y + 6 = 0.
  • Solving y+6=0y + 6 = 0 gives us y=6y = -6.
  • This means y=6y = -6 would make the denominator zero, thus the expression would be undefined for this value.

Therefore, the field of application, or the domain of the equation, is all real numbers except y=6y = -6.

We must conclude that y6 y \neq -6 .

Comparing with the provided choices, the correct answer is choice 3: y6 y \neq -6 .

Answer

y6 y\operatorname{\ne}-6

Exercise #4

Look at the following function:

5x \frac{5}{x}

Does the function have a domain? If so, what is it?

Video Solution

Step-by-Step Solution

Since the unknown variable is in the denominator, we should remember that the denominator cannot be equal to 0.

In other words, x0 x\ne0

The domain of the function is all those values that, when substituted into the function, will make the function legal and defined.

The domain in this case will be all real numbers that are not equal to 0.

Answer

Yes, x0 x\ne0

Exercise #5

Does the given function have a domain? If so, what is it?

9x4 \frac{9x}{4}

Video Solution

Step-by-Step Solution

Since the function's denominator equals 4, the domain of the function is all real numbers. This means that any one of the x values could be compatible.

Answer

No, the entire domain

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice