The Linear Function y=mx+b

🏆Practice linear function y=mx+b

The linear function y=mx+by=mx+b actually represents a graph of a straight line that has a point of intersection with the vertical Y Y axis.

m m represents the slope.
When m m is positive, the slope is positive: the line goes upwards.
When m m is negative, the slope is negative: the line goes downwards.
When m=0 m = 0 , the slope is zero: the line is parallel to the X X axis.

b b represents the point where the line intersects the Y Y axis.
If b=0 b=0 , then the line will pass through the origin of the coordinates, that is, the point (0,0) \left(0,0\right)

A - The Linear Function y=mx+b

Start practice

Test yourself on linear function y=mx+b!

einstein

For the function in front of you, the slope is?

XY

Practice more now

How do we know if a point lies on a function?

If we are given a point, we can place it into the equation of a line to see if the equation holds true.
If we are given just one part of the point: X X or Y Y , we will put the given value into the equation correctly and find the second part of the point.


How do we graph the function?

If we want a precise drawing, we'll build a table of values with 3 3 or fewer values.
We replace X X each time and obtain the value of Y Y .
We consider the slope of the function to be increasing, decreasing, or equal to 0 0 , and then we graph it.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

What do we do if the slope is undefined?

To calculate the slope, we can use a formula that finds it using two given points that the line passes through:

m=(Y2Y1)(X2X1) m=\frac{\left(Y2-Y1\right)}{(X2-X1)}


A Lesson on Linear Functions

We are given a linear function y=3x+4 y=3x+4 .

We are asked to interpret the values 3 3 and 4 4 and plot the graph of the function.

First, it appears that m=3 m=3 , meaning 3 3 represents the slope of the line (or function).

b=4 b=4 means that the line intersects the vertical axis (the y-axis) at 4 4 .

To plot the graph, all we need are 2 2 points.
We substitute values and obtain:

1.a - An exercise on the linear function

Now we will mark the two points on the coordinate system and connect them.
Looking at the graph, we can confirm that the plot intersects the y-axis at the value of 4 4 .


Examples and exercises with solutions for the linear function

Exercise #1

For the function in front of you, the slope is?

XY

Video Solution

Step-by-Step Solution

To solve this problem, we need to determine the slope of the line depicted on the graph.

First, understand that the slope of a line on a coordinate plane indicates how steep the line is and the direction it is heading. Specifically:

  • A positive slope means the line rises as it goes from left to right.
  • A negative slope means the line falls as it goes from left to right.

Let's examine the graph given:

  • We see that the line starts at a higher point on the left and descends to a lower point on the right side.
  • As we move from the left side of the graph towards the right, the line goes downwards.

This downward trajectory clearly indicates a negative slope because the line is declining as we move horizontally left to right.

Therefore, the slope of this function is Negative.

The correct answer is, therefore, Negative slope.

Answer

Negative slope

Exercise #2

For the function in front of you, the slope is?

XY

Video Solution

Step-by-Step Solution

To determine the slope of the line shown on the graph, we perform a visual analysis:

  • We examine the orientation of the line from left to right.
  • The red line starts at a higher point on the left and descends to a lower point on the right.
  • This indicates a downward movement, which corresponds to a negative slope.

Therefore, by observing the direction of the line, we conclude that the slope of the function is negative. This positional evaluation confirms that the correct answer is negative slope.

Answer

Negative slope

Exercise #3

For the function in front of you, the slope is?

XY

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Visual Inspection – Examine the red line on the graph to determine direction.
  • Step 2: Determine Slope Direction – Ascertain if the line rises or falls as it moves from left to right.
  • Step 3: Compare with Possible Answers – Verify which choice aligns with the determined slope direction.

Now, let's work through each step:
Step 1: The graph shows a red line segment, oriented in a manner that moves from left (lower) to right (higher).
Step 2: As the red line moves from the left toward the right side of the graph, it rises, indicating an upward trend and suggesting a positive slope.
Step 3: Given that the line increases from left to right, the slope is positive.

Therefore, the solution to the problem is Positive slope.

Answer

Positive slope

Exercise #4

For the function in front of you, the slope is?

XY

Video Solution

Step-by-Step Solution

To solve this problem, let's analyze the given graph of the function to determine the slope's sign.

The slope of a line on a graph indicates the line's direction. A line with a positive slope rises as it moves from left to right, indicating that for every step taken to the right (along the x-axis), we move upward. Conversely, a line with a negative slope falls as it moves from left to right, meaning each step to the right results in moving downward.

Examining the graph provided, the red line starts higher on the left and goes downward towards the right visually. This indicates that the line is rising as it goes from left to right, which confirms it has a positive slope.

Therefore, the solution to the problem, regarding the slope of the line, is that it is a Positive slope.

Answer

Positive slope

Exercise #5

For the function in front of you, the slope is?

XY

Video Solution

Step-by-Step Solution

To solve this problem, let's evaluate the graph of the line provided:

  • The line is visually represented as starting from the bottom left to the top right, moving upwards.
  • In a standard Cartesian graph, a line that ascends as it progresses from left to right implies a positive change in the y-coordinate as the x-coordinate increases.
  • This upward trajectory indicates that the slope, m m , is positive.

Thus, the slope of the function is positive.

Therefore, the answer is Positive slope.

Answer

Positive slope

Do you know what the answer is?
Start practice