Constant Function

🏆Practice increasing and decreasing intervals of a function

We will say that a function is constant when, as the value of the independent variable X X increases, the dependent variable Y Y remains the same.

Let's assume we have two elements X X , which we will call X1 X1 and X2 X2 , where the following is true: X1<X2 X1<X2 , that is, X2 X2 is located to the right of X1 X1 .

  • When X1 X1 is placed in the domain, the value Y1 Y1 is obtained.
  • When X2 X2 is placed in the domain, the value Y2Y2 is obtained.


The function is constant when: X2>X1 X2>X1 and also \(Y2=Y1).

The function can be constant in intervals or throughout its domain.

Constant Function

Constant Function

Start practice

Test yourself on increasing and decreasing intervals of a function!

einstein

In what domain does the function increase?

–20–20–20–10–10–10101010202020–10–10–10101010000

Practice more now

Constant Function Exercises

Exercise 1

Assignment

Find the decreasing and increasing area of the function

f(x)=5x225 f(x)=5x^2-25

Solution

In the first step, let's consider that a=5 a=5

Therefore a>0 a>0 and the parabola is at the minimum

In the second step, we find x x of the vertex

according to the data we know:

a=5,b=0,c=25 a=5,b=0,c=-25

We replace the data in the formula:

x=b2a x=\frac{-b}{2\cdot a}

x=025 x=\frac{-0}{2\cdot5}

x=010 x=\frac{-0}{10}

x=0 x=0

Answer

x<0 x<0 Decreasing

0<x 0<x Increasing


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Assignment

Given the linear function of the graph

What is the domain of negativity of the function?

the function is always above the x-axis

Solution

Keep in mind that the function is always above the axis: x x

That is, the function is always positive and has no negative domain. Therefore, no x x

Answer

The function is always positive


Exercise 3

Assignment

Find the increasing area of the function

f(x)=6x212 f(x)=6x^2-12

Solution

In the first step, let's consider that a=6 a=6

Therefore a>0 a>0 and the parabola is a minimum

In the second step, we find x x of the vertex

according to the data we know that:

a=6,b=0,c=12 a=6,b=0,c=-12

We replace the data in the formula

x=b2a x=\frac{-b}{2\cdot a}

x=026 x=\frac{-0}{2\cdot6}

x=012 x=\frac{0}{12}

x=0 x=0

Therefore

0<x 0<x Increasing

x<0 x<0 Decreasing

Answer

0<x 0<x


Do you know what the answer is?

Exercise 4

Assignment

To find the increasing and decreasing area of the function, you need to find the intersection point of the vertex

Answer

True


Exercise 5

Assignment

Given the function in the diagram, what is its domain of positivity?

what is its domain of positivity

Solution

Note that the entire function is always above the axis: x x

Therefore, it will always be positive. Its area of positivity will be for all x x

Answer

For all x x


Check your understanding

Examples with solutions for Constant Function

Exercise #1

In what domain does the function increase?

–20–20–20–10–10–10101010202020–10–10–10101010000

Video Solution

Step-by-Step Solution

Let's remember that the function increases if the X values and Y values increase simultaneously.

On the other hand, the function decreases if the X values increase and the Y values decrease simultaneously.

In the given graph, we notice that the function increases in the domain where x > 0 meaning the Y values are increasing.

Answer

x > 0

Exercise #2

In what domain is the function negative?

–0.5–0.5–0.50.50.50.51111.51.51.5222000

Video Solution

Step-by-Step Solution

Let's remember that a function is increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph, we can see that in the domain x > 1 the function is decreasing, meaning the Y values are decreasing.

Answer

x > 1

Exercise #3

In what domain is the function increasing?

–5–5–5555101010151515–5–5–5555000

Video Solution

Step-by-Step Solution

Let's remember that a function is increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph shown, we can see that the function is increasing in every domain, therefore the function is increasing for all X.

Answer

Entirex x

Exercise #4

In what domain does the function increase?

000

Video Solution

Step-by-Step Solution

Let's remember that the function increases if the X values and Y values increase simultaneously.

On the other hand, the function decreases if the X values increase and the Y values decrease simultaneously.

In the given graph, we notice that the function increases in the domain where x < 0 meaning the Y values are increasing.

Answer

x<0

Exercise #5

In what interval is the function increasing?

Purple line: x=0.6 x=0.6

111222333111000

Video Solution

Step-by-Step Solution

Let's remember that a function is increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph, we can see that in the domain x < 0.6 the function is increasing, meaning the Y values are increasing.

Answer

x<0.6

Start practice