Inputing Values into a Function

🏆Practice domain of a function

Generally, a numerical value is assigned in equations with variables or in mathematical expressions that include variables.

The assignment involves changing the variables in a mathematical expression or equation to specific numerical values.

For example

X=3 X=3

Y=2 Y=2

Z=? Z=\text{?}

X2+Y=Z X^2+Y=Z

32+2=11 3^2+2=11

Answer: Z=11 Z=11

X Y Z By assigning the numerical value, the general form becomes a particular case

By assigning the numerical value, the general form becomes a particular case.

Start practice

Test yourself on domain of a function!

einstein

\( \frac{6}{x+5}=1 \)

What is the field of application of the equation?

Practice more now

Examples and exercises with solutions for assigning numerical value in a function

Exercise #1

Given the following function:

5x \frac{5}{x}

Does the function have a domain? If so, what is it?

Video Solution

Step-by-Step Solution

Since the unknown is in the denominator, we should remember that the denominator cannot be equal to 0.

In other words, x0 x\ne0

The domain of the function is all those values that, when substituted into the function, will make the function legal and defined.

The domain in this case will be all real numbers that are not equal to 0.

Answer

Yes, x0 x\ne0

Exercise #2

Does the given function have a domain? If so, what is it?

9x4 \frac{9x}{4}

Video Solution

Step-by-Step Solution

Since the function's denominator equals 4, the domain of the function is all real numbers. This means that any one of the x values could be compatible.

Answer

No, the entire domain

Exercise #3

Given the following function:

5+4x2+x2 \frac{5+4x}{2+x^2}

Does the function have a domain? If so, what is it?

Video Solution

Step-by-Step Solution

Since the denominator is positive for all X, the domain of the function is the entire domain.

That is, all X, therefore there is no domain restriction.

Answer

No, the entire domain

Exercise #4

Given the following function:

65(2x2)2 \frac{65}{(2x-2)^2}

Does the function have a domain? If so, what is it?

Video Solution

Step-by-Step Solution

The denominator of the function cannot be equal to 0.

Therefore, we will set the denominator equal to 0 and solve for the domain:

(2x2)20 (2x-2)^2\ne0

2x2 2x\ne2

x1 x\ne1

In other words, the domain of the function is all numbers except 1.

Answer

Yes, x1 x\ne1

Exercise #5

6x+5=1 \frac{6}{x+5}=1

What is the field of application of the equation?

Video Solution

Answer

x5 x\operatorname{\ne}-5

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice