When we talk about functions, it's important to highlight that the graphs of functions are represented in an axis system where there is a horizontal axis X and a vertical axis Y.
Linear functions can be expressed by the expressions y=mx or y=mx+b, where m represents the slope of the line while b (when it exists) represents the y-intercept.
To plot a linear function, all we need are 2 points. If the linear function is given, you can substitute a value for X and obtain the corresponding Y value.
Look at the linear function represented in the diagram.
When is the function positive?
Incorrect
Correct Answer:
\( x>2 \)
Question 2
Look at the function shown in the figure.
When is the function positive?
Incorrect
Correct Answer:
\( -4 > x \)
Question 3
What is the solution to the following inequality?
\( 10x-4≤-3x-8 \)
Incorrect
Correct Answer:
Let's illustrate this with an example.
Given the function: y=2x+1
We are asked to graph it on the coordinate system.
As we have discussed, to do this we need two points, which we will place in the function's expression. Choose any two points we like, it doesn't matter.
Now we will plot the two points on the coordinate system and connect them. This is actually a graph of the function for y=2x+1.
Examples and Exercises with Solutions for Linear Functions
Exercise #1
For the function in front of you, the slope is?
Video Solution
Step-by-Step Solution
For this problem, we need to determine the nature of the slope for a given straight line on a graph.
Based on the graph provided, the red line starts at a higher point on the left (Y-axis) and moves downward toward a lower point on the right (X-axis). This indicates that as one moves from left to right across the graph, the function decreases in value. Consequently, this is typical of a line that has a negative slope.
The slope of a line is typically defined as the "rise over the run," or the ratio of the change in the vertical direction to the change in the horizontal direction. Here, as we proceed from left to right, the line goes "downwards" (negative rise), establishing a negative slope.
Thus, we can conclude that the slope of the line is negative.
Therefore, the solution to the problem is Negative slope.
Answer
Negative slope
Exercise #2
For the function in front of you, the slope is?
Video Solution
Step-by-Step Solution
To determine the slope of the line segment shown in the graph, follow these steps:
Identify the line segment on the graph; it's shown as a red line from one point to another.
Examine the direction the line segment travels from the leftmost point to the rightmost point.
Visually analyze whether the line segment is rising or falling as it moves from left to right.
Here is the detailed analysis:
- The red line segment starts lower on the left side and ends higher on the right side.
- This suggests that as we move from left to right, the line is rising.
- In terms of slope, a line that rises as it moves from left to right has a positive slope.
Therefore, the slope of the line segment is positive.
Thus, the correct answer is Positive slope.
Answer
Positive slope
Exercise #3
For the function in front of you, the slope is?
Video Solution
Step-by-Step Solution
To determine the slope of the line shown on the graph, we perform a visual analysis:
We examine the orientation of the line from left to right.
The red line starts at a higher point on the left and descends to a lower point on the right.
This indicates a downward movement, which corresponds to a negative slope.
Therefore, by observing the direction of the line, we conclude that the slope of the function is negative. This positional evaluation confirms that the correct answer is negative slope.
Answer
Negative slope
Exercise #4
For the function in front of you, the slope is?
Video Solution
Step-by-Step Solution
To determine the slope of the line, we'll examine the direction of the line segment on the graph:
The line depicted moves from the top left, passing through a point with higher y-coordinate values, to the bottom right, ending at a point with lower y-coordinate values.
This movement indicates that as x increases (the direction to the right along the x-axis), the y-coordinate decreases.
When the y-value reduces as the x-value grows, the slope m is negative.
Since the line descends from left to right, the slope of the line is negative.
Therefore, the slope of the function is a negative slope.
Answer
Negative slope
Exercise #5
For the function in front of you, the slope is?
Video Solution
Step-by-Step Solution
To solve this problem, follow these steps:
Step 1: Observe the given graph and the plotted line.
Step 2: Determine the direction of the line as it moves from left to right across the graph.
Step 3: Understand that a line moving downwards from left to right represents a negative slope.
Now, let's work through these steps:
Step 1: The graph shows a straight line that starts higher on the left side and descends towards the right side.
Step 2: As the line moves from left to right, it descends. This is a key indicator of the slope type.
Step 3: A line that moves downward from the left side to the right side of the graph (decreasing in height as it proceeds to the right) is characteristic of a negative slope. Conversely, a positive slope would show a line ascending as it moves rightward.
Therefore, the solution to the problem is the line has a negative slope.