Decreasing Interval of a function

🏆Practice increasing and decreasing intervals of a function

The decreasing intervals of a function

A decreasing interval of a function expresses the same values of X (the interval), in which the values of the function (Y) decrease parallelly to the increase of the values of X to the right.

In certain cases, the decreasing interval begins at the maximum point, but it does not necessarily have to be this way.

Start practice

Test yourself on increasing and decreasing intervals of a function!

Determine in which domain the function is negative?

–0.5–0.5–0.50.50.50.51111.51.51.5222000

Practice more now

Examples and exercises with solutions of the decreasing interval of the function

Exercise #1

Determine in which domain the function is negative?

–0.5–0.5–0.50.50.50.51111.51.51.5222000

Video Solution

Step-by-Step Solution

Remember that a function is increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph, we can observe that in the domain x>1 x > 1 the function is decreasing, meaning the Y values are decreasing.

Answer

x>1 x > 1

Exercise #2

Does the function in the graph decrease throughout?

YYYXXX

Step-by-Step Solution

To solve this problem, we'll begin by examining the graph of the function provided:

  • Step 1: Observe the graph from left to right along the x-axis.
  • Step 2: Look for any intervals where the function value (y-coordinate) does not decrease as the x-value increases.
  • Step 3: Pay special attention to segments where the graph might look horizontal or rising.

Upon inspecting the graph, we find:

- There are sections where the function's y-values appear to remain constant or potentially rise as the x-values increase. Specifically, even if the function decreases in major portions, any interval where it doesn't means the function cannot be classified as decreasing throughout.

Thus, the function does not strictly decrease on the entire interval shown. Therefore, the solution to the problem is No.

Answer

No

Exercise #3

In what domain does the function increase?

–20–20–20–10–10–10101010202020–10–10–10101010000

Video Solution

Step-by-Step Solution

Let's remember that the function increases if the x x values and y y values increase simultaneously.

On the other hand, the function decreases if the x x values increase while the y y values decrease simultaneously.

In the given graph, we can see that the function increases in the domain where x>0 x > 0 ; in other words, where the y y values are increasing.

Answer

x>0 x > 0

Exercise #4

In what domain does the function increase?

000

Video Solution

Step-by-Step Solution

Let's remember that the function increases if the X values and Y values increase simultaneously.

On the other hand, the function decreases if the X values increase and the Y values decrease simultaneously.

In the given graph, we notice that the function increases in the domain where x<0 x < 0 , meaning the Y values are increasing.

Answer

x<0 x<0

Exercise #5

In what domain is the function increasing?

–5–5–5555101010151515–5–5–5555000

Video Solution

Step-by-Step Solution

Let's first remember that a function is increasing if both the X and Y values are increasing simultaneously.

Conversely, a function is decreasing if the X values are increasing while the Y values are decreasing simultaneously.

In the graph shown, we can see that the function is increasing in every domain and therefore the function is increasing for all values of X.

Answer

All values of x x

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice