Decreasing Interval of a function - Examples, Exercises and Solutions

Understanding Decreasing Interval of a function

Complete explanation with examples

The decreasing intervals of a function

A decreasing interval of a function expresses the same values of X (the interval), in which the values of the function (Y) decrease parallelly to the increase of the values of X to the right.

In certain cases, the decreasing interval begins at the maximum point, but it does not necessarily have to be this way.

Detailed explanation

Practice Decreasing Interval of a function

Test your knowledge with 17 quizzes

Determine the domain of the following function:

A function describing the charging of a computer battery during use.

Examples with solutions for Decreasing Interval of a function

Step-by-step solutions included
Exercise #1

In what domain is the function increasing?

–5–5–5555101010151515–5–5–5555000

Step-by-Step Solution

Let's first remember that a function is increasing if both the X and Y values are increasing simultaneously.

Conversely, a function is decreasing if the X values are increasing while the Y values are decreasing simultaneously.

In the graph shown, we can see that the function is increasing in every domain and therefore the function is increasing for all values of X.

Answer:

All values of x x

Video Solution
Exercise #2

In what interval is the function increasing?

Purple line: x=0.6 x=0.6

111222333111000

Step-by-Step Solution

Let's remember that a function is described as increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph, we can see that in the domain x < 0.6 the function is increasing, meaning the Y values are increasing.

Answer:

x<0.6

Video Solution
Exercise #3

In what domain does the function increase?

–20–20–20–10–10–10101010202020–10–10–10101010000

Step-by-Step Solution

Let's remember that the function increases if the x x values and y y values increase simultaneously.

On the other hand, the function decreases if the x x values increase while the y y values decrease simultaneously.

In the given graph, we can see that the function increases in the domain where x > 0 ; in other words, where the y y values are increasing.

Answer:

x > 0

Video Solution
Exercise #4

In what domain does the function increase?

000

Step-by-Step Solution

Let's remember that the function increases if the X values and Y values increase simultaneously.

On the other hand, the function decreases if the X values increase and the Y values decrease simultaneously.

In the given graph, we notice that the function increases in the domain where x < 0 , meaning the Y values are increasing.

Answer:

x<0

Video Solution
Exercise #5

Determine in which domain the function is negative?

–0.5–0.5–0.50.50.50.51111.51.51.5222000

Step-by-Step Solution

Remember that a function is increasing if both X values and Y values are increasing simultaneously.

A function is decreasing if X values are increasing while Y values are decreasing simultaneously.

In the graph, we can observe that in the domain x > 1 the function is decreasing, meaning the Y values are decreasing.

Answer:

x > 1

Video Solution

More Decreasing Interval of a function Questions

Continue Your Math Journey

Practice by Question Type