Calculate the Area of an Equilateral Hexagon with Side Length 7 and Height 12.124

Question

Below is an equilateral hexagon.

AB = 7
FC = 14
AE = 12.124

77712.12412.12412.124141414AAABBBCCCDDDEEEFFFGGG

What is the area of the hexagon?

Video Solution

Solution Steps

00:00 Find the area of the hexagon
00:03 We'll use the formula to calculate the area of a regular hexagon
00:11 The side length according to the given data
00:19 The hexagon is equilateral according to the given data (regular)
00:26 We'll substitute the side length value and solve for the area
00:47 And this is the solution to the question

Step-by-Step Solution

The hexagon consists of two equal trapezoids, so we will strive to calculate the area of one of them and multiply it.

AFE is an isosceles triangle,

its height (FG) crosses the base exactly in the center, therefore:

AG=GE AG=GE

AG=12AE AG=\frac{1}{2}AE

We replace and discover:

AE=12×12=6 AE=\frac{1}{2}\times12=6

We replace the data in the formula for the area of a trapezoid:

(base+base)2×altura \frac{(base+base)}{2}\times altura

7+142×6=212×6=10.5×6=63 \frac{7+14}{2}\times6=\frac{21}{2}\times6=10.5\times6=63

63 is the area of half of the hexagon, therefore:

63×2=126 63\times2=126

Answer

127.3