Power of a Quotient

When we encounter an expression with a quotient (or division) inside parentheses and the entire expression is raised to a certain exponent, we can take the exponent and apply it to each of the terms in the expression.
Let's not forget to maintain the fraction bar between the terms.
Formula of the property:
(ab)n=anbn(\frac {a}{b})^n=\frac {a^n}{b^n}
This property is also relevant to algebraic expressions.

Suggested Topics to Practice in Advance

  1. Multiplying Exponents with the Same Base
  2. Division of Exponents with the Same Base
  3. Exponent of a Multiplication

Practice Powers of a Fraction

Examples with solutions for Powers of a Fraction

Exercise #1

Insert the corresponding expression:

(13)3= \left(\frac{1}{3}\right)^3=

Video Solution

Step-by-Step Solution

To solve the expression (13)3 \left(\frac{1}{3}\right)^3 , we need to apply the rule for exponents of a fraction, which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this property, we can rewrite the fraction with its exponent as follows:

(13)3=1333 \left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3}

Now, calculate the powers of the numerator and the denominator separately:

  • 13=1 1^3 = 1

  • 33=27 3^3 = 27

Thus, putting it all together, we have:

1333=127 \frac{1^3}{3^3} = \frac{1}{27}

This shows that raising both the numerator and the denominator of a fraction to a power involves calculating the power of each part separately and then constructing a new fraction.

The solution to the question is: 127 \frac{1}{27}

Answer

127 \frac{1}{27}

Exercise #2

What is the result of the following power?

(23)3 (\frac{2}{3})^3

Video Solution

Step-by-Step Solution

To solve the given power expression, we need to apply the formula for powers of a fraction. The expression we are given is:
(23)3 \left(\frac{2}{3}\right)^3

Let's break down the steps:

  • When we raise a fraction to a power, we apply the exponent to both the numerator and the denominator separately. This means raising both 2 and 3 to the power of 3.
  • Thus, we calculate:
    23=8 2^3 = 8 and 33=27 3^3 = 27 .
  • Therefore, (23)3=2333=827 \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} .

So, the result of the expression (23)3 \left(\frac{2}{3}\right)^3 is 827 \frac{8}{27} .

Answer

827 \frac{8}{27}

Exercise #3

(26)3= (\frac{2}{6})^3=

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(26)3=(22×3)3 (\frac{2}{6})^3=(\frac{2}{2\times3})^3

We simplify:

(13)3=1333 (\frac{1}{3})^3=\frac{1^3}{3^3}

1×1×13×3×3=127 \frac{1\times1\times1}{3\times3\times3}=\frac{1}{27}

Answer

127 \frac{1}{27}

Exercise #4

Insert the corresponding expression:

(11×910×12)x+a= \left(\frac{11\times9}{10\times12}\right)^{x+a}=

Step-by-Step Solution

To solve the problem, we need to simplify the expression (11×910×12)x+a \left(\frac{11\times9}{10\times12}\right)^{x+a} and write it in the form requested in the question.

We begin by using the exponent rule: (ab)n=anbn (\frac{a}{b})^n = \frac{a^n}{b^n} . Applying this rule here:

<spanclass="katex">(11×910×12)x+a=(11×9)x+a(10×12)x+a</span><span class="katex"> \left(\frac{11\times9}{10\times12}\right)^{x+a} = \frac{(11\times9)^{x+a}}{(10\times12)^{x+a}} </span>

Next, we can simplify the expression further by applying the power over a product rule: (ab)n=an×bn (ab)^n = a^n \times b^n .

Applying this rule to both the numerator and denominator gives us:

Numerator: (11×9)x+a=11x+a×9x+a (11\times9)^{x+a} = 11^{x+a} \times 9^{x+a}

Denominator: (10×12)x+a=10x+a×12x+a (10\times12)^{x+a} = 10^{x+a} \times 12^{x+a}

Therefore, the entire expression becomes:

<spanclass="katex">11x+a×9x+a10x+a×12x+a</span><span class="katex"> \frac{11^{x+a} \times 9^{x+a}}{10^{x+a} \times 12^{x+a}} </span>

This matches the given answer. Thus, the solution to the question is:

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Answer

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Exercise #5

Insert the corresponding expression:

(137×6×3)x+y= \left(\frac{13}{7\times6\times3}\right)^{x+y}=

Video Solution

Step-by-Step Solution

Let's start by examining the expression given in the question:

(137×6×3)x+y \left(\frac{13}{7\times6\times3}\right)^{x+y}

This expression is a power of a fraction. There is a general rule in exponents which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this rule, we will apply it to our original expression.

Given, a=13 a = 13 , b=7×6×3 b = 7\times6\times3 , and n=x+y n = x+y , we can rewrite our expression as:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

The solution to the question is:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

Answer

13x+y(7×6×3)x+y \frac{13^{x+y}}{\left(7\times6\times3\right)^{x+y}}

Exercise #6

Insert the corresponding expression:

(2×4×67×8×9)3x= \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}=

Video Solution

Step-by-Step Solution

Let's analyze the expression we are given:

(2×4×67×8×9)3x \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}

The expression is a power of a fraction. The rule for powers of a fraction is that each component of the fraction must be raised to the power separately. This can be expressed as:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Applying this rule to our expression, we have:

  • The numerator inside the power: 2×4×6 2 \times 4 \times 6
  • The denominator inside the power: 7×8×9 7 \times 8 \times 9

Therefore, raising each part to the power 3x3x gives us:

(2×4×6)3x(7×8×9)3x \frac{(2\times4\times6)^{3x}}{(7\times8\times9)^{3x}}

Thus, the simplified expression for the given equation is:

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

The solution to the question is: (2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Answer

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Exercise #7

Insert the corresponding expression:

a5×x575×b5= \frac{a^5\times x^5}{7^5\times b^5}=

Video Solution

Step-by-Step Solution

To solve this problem, our goal is to express the given quotient of powers in a simplified form using exponent laws.

  • Step 1: Understand the original expression. We have a5×x575×b5\frac{a^5 \times x^5}{7^5 \times b^5}.
  • Step 2: Recognize the structure. Notice that both the numerator and denominator are raised to the fifth power.
  • Step 3: Apply the property of exponents for quotients and products, which states that (mn)k=mknk\left(\frac{m}{n}\right)^k = \frac{m^k}{n^k} and (mn)k=mknk(m \cdot n)^k = m^k \cdot n^k.
  • Step 4: Rewrite the expression as a single fraction raised to the power of 5. Since each term in the numerator and denominator is raised to the fifth power separately, we combine them under a single power:
    • Numerator: a5×x5=(a×x)5a^5 \times x^5 = (a \times x)^5
    • Denominator: 75×b5=(7×b)57^5 \times b^5 = (7 \times b)^5
    • Therefore, a5×x575×b5=(a×x7×b)5\frac{a^5 \times x^5}{7^5 \times b^5} = \left(\frac{a \times x}{7 \times b}\right)^5.

Thus, the expression can be written as: (a×x7×b)5\left(\frac{a \times x}{7 \times b}\right)^5.

Now, comparing this with the answer choices provided:

  • Choice 1: (a×x)57×b5\frac{(a \times x)^5}{7 \times b^5} - does not match, as it retains the separate powers incorrectly.
  • Choice 2: (a×x7×b)5\left(\frac{a \times x}{7 \times b}\right)^5 - matches perfectly as derived.
  • Choice 3: a×x5(7×b)5\frac{a \times x^5}{(7 \times b)^5} - incorrect form compared to derived structure.
  • Choice 4: 7×(a×xb)57 \times \left(\frac{a \times x}{b}\right)^5 - unrelated format, doesn't match.

The correct choice is therefore Choice 2. This matches our derived expression using the laws of exponents correctly.

Answer

(a×x7×b)5 \left(\frac{a\times x}{7\times b}\right)^5

Exercise #8

Insert the corresponding expression:

(7×11×193×12×15)4= \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}=

Video Solution

Step-by-Step Solution

The given expression is:
(7×11×193×12×15)4 \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}

To solve this expression, we need to apply the rules of exponents, specifically the rule for powers of a fraction. For any fraction(ab)n \left(\frac{a}{b}\right)^{-n} , the expression is equivalent to(ba)n \left(\frac{b}{a}\right)^n .
Therefore, negative exponents indicate that the fraction should be flipped and raised to the positive of that exponent.

Substitute the terms into this formula:
1. Flip the fraction: (3×12×157×11×19) \left(\frac{3\times12\times15}{7\times11\times19}\right)
2. Raise both numerator and denominator to the power of 4:
Thus, we have:
(3×12×157×11×19)4 \left(\frac{3\times12\times15}{7\times11\times19}\right)^{4}

Now evaluating each term individually:
- In the numerator:
- 34×124×154 3^4\times12^4\times15^4
- In the denominator:
- 74×114×194 7^4\times11^4\times19^4

Applying the negative exponent rule, each individual factor in both numerator and denominator should be inverted, altering the exponents to negative:
1. Numerator becomes: 34×124×154 3^{-4}\times12^{-4}\times15^{-4}
2. Denominator becomes: 74×114×194 7^{-4}\times11^{-4}\times19^{-4}

Rewriting the expression, we achieve:
74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

This matches precisely the provided solution.

The solution to the question is:74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Answer

74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Exercise #9

(23)4=? (\frac{2}{3})^{-4}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=(ba)n (\frac{a}{b})^{-n}=(\frac{b}{a})^n

Therefore, we obtain:

(32)4 (\frac{3}{2})^4

We use the formula:

(ba)n=bnan (\frac{b}{a})^n=\frac{b^n}{a^n}

Therefore, we obtain:

3424=3×3×3×32×2×2×2=8116 \frac{3^4}{2^4}=\frac{3\times3\times3\times3}{2\times2\times2\times2}=\frac{81}{16}

Answer

8116 \frac{81}{16}

Exercise #10

7483(17)4=? 7^4\cdot8^3\cdot(\frac{1}{7})^4=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

We decompose the fraction inside of the parentheses:

(17)4=1474 (\frac{1}{7})^4=\frac{1^4}{7^4}

We obtain:

74×83×1474 7^4\times8^3\times\frac{1^4}{7^4}

We simplify the powers: 74 7^4

We obtain:

83×14 8^3\times1^4

Remember that the number 1 in any power is equal to 1, thus we obtain:

83×1=83 8^3\times1=8^3

Answer

83 8^3

Exercise #11

Insert the corresponding expression:

(12×3×4)2= \left(\frac{1}{2\times3\times4}\right)^{-2}=

Video Solution

Step-by-Step Solution

We are given the expression: (12×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} . We need to simplify it using the rules of exponents.

  • Step 1: Identify the base of the exponent.
    The base is 12×3×4 \frac{1}{2\times3\times4} .

  • Step 2: Apply the rule for negative exponents.
    For a fraction 1a \frac{1}{a} with a negative exponent, (1a)n=an \left( \frac{1}{a} \right)^{-n} = a^n . Therefore, (12×3×4)2=(2×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} = (2\times3\times4)^2 .

  • Step 3: Expand the expression.
    (2×3×4)2=22×32×42(2\times3\times4)^2 = 2^2 \times 3^2 \times 4^2 .


Thus, the simplified expression is: 22×32×42 2^2\times3^2\times4^2

Answer

22×32×42 2^2\times3^2\times4^2

Exercise #12

Insert the corresponding expression:

1ax= \frac{1}{a^{-x}}=

Video Solution

Step-by-Step Solution

We begin with the expression: 1ax \frac{1}{a^{-x}} .
Our goal is to simplify this expression while converting any negative exponents into positive ones.

  • Recall the rule for negative exponents: an=1an a^{-n} = \frac{1}{a^n} .
  • Correspondingly, 1an=an \frac{1}{a^{-n}} = a^n .
  • Thus, in our expression 1ax \frac{1}{a^{-x}} , the negative exponent can be converted and flipped to the numerator by the rule: 1ax=ax \frac{1}{a^{-x}} = a^x .
Therefore, the expression evaluates to ax a^x .

The solution to the question is: ax a^x .

Answer

ax a^x

Exercise #13

Which value is greater?

Video Solution

Step-by-Step Solution

To determine which expression has the greatest value, we apply the exponent rules to simplify each choice:

  • For x3×x4 x^3 \times x^4 , using the product rule: x3×x4=x3+4=x7 x^3 \times x^4 = x^{3+4} = x^7 .
  • For (x3)5 (x^3)^5 , using the power of a power rule: (x3)5=x3×5=x15 (x^3)^5 = x^{3 \times 5} = x^{15} .
  • x10 x^{10} is already in its simplest form.
  • For x9x2 \frac{x^9}{x^2} , using the quotient rule: x9x2=x92=x7 \frac{x^9}{x^2} = x^{9-2} = x^7 .

To identify the greater value, we compare the exponents:

  • x7 x^7 from choices 1 and 4.
  • x15 x^{15} from choice 2.
  • x10 x^{10} from choice 3.

The expression with the largest exponent is (x3)5 (x^3)^5 or x15 x^{15} .

Therefore, the expression with the greatest value is (x3)5(x^3)^5.

Answer

(x3)5 (x^3)^5

Exercise #14

454614=? 4^5-4^6\cdot\frac{1}{4}=\text{?}

Video Solution

Step-by-Step Solution

We'll use the law of exponents for negative exponents, but in the opposite direction:

1an=an \frac{1}{a^n} =a^{-n} Let's apply this law to the problem:

454614=454641 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} When we apply the above law to the second term from the left in the sum, and convert the fraction to a term with a negative exponent,

Next, we'll use the law of exponents for multiplying terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Let's apply this law to the expression we got in the last step:

454641=4546+(1)=45461=4545=0 4^5-4^6\cdot4^{-1} =4^5-4^{6+(-1)}=4^5-4^{6-1}=4^5-4^{5}=0 When we apply the above law of exponents to the second term from the left in the expression we got in the last step, then we'll simplify the resulting expression,

Let's summarize the solution steps:

454614=454641=4545=0 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} =4^5-4^{5}=0

We got that the answer is 0,

Therefore the correct answer is answer A.

Answer

0

Exercise #15

(4274)2= (\frac{4^2}{7^4})^2=

Video Solution

Step-by-Step Solution

(4274)2=42×274×2=4478 (\frac{4^2}{7^4})^2=\frac{4^{2\times2}}{7^{4\times2}}=\frac{4^4}{7^8}

Answer

4478 \frac{4^4}{7^8}