Examples with solutions for Powers of a Fraction: Variable in the exponent of the power

Exercise #1

Insert the corresponding expression:

(11×910×12)x+a= \left(\frac{11\times9}{10\times12}\right)^{x+a}=

Step-by-Step Solution

To solve the problem, we need to simplify the expression (11×910×12)x+a \left(\frac{11\times9}{10\times12}\right)^{x+a} and write it in the form requested in the question.

We begin by using the exponent rule: (ab)n=anbn (\frac{a}{b})^n = \frac{a^n}{b^n} . Applying this rule here:

<spanclass="katex">(11×910×12)x+a=(11×9)x+a(10×12)x+a</span><span class="katex"> \left(\frac{11\times9}{10\times12}\right)^{x+a} = \frac{(11\times9)^{x+a}}{(10\times12)^{x+a}} </span>

Next, we can simplify the expression further by applying the power over a product rule: (ab)n=an×bn (ab)^n = a^n \times b^n .

Applying this rule to both the numerator and denominator gives us:

Numerator: (11×9)x+a=11x+a×9x+a (11\times9)^{x+a} = 11^{x+a} \times 9^{x+a}

Denominator: (10×12)x+a=10x+a×12x+a (10\times12)^{x+a} = 10^{x+a} \times 12^{x+a}

Therefore, the entire expression becomes:

<spanclass="katex">11x+a×9x+a10x+a×12x+a</span><span class="katex"> \frac{11^{x+a} \times 9^{x+a}}{10^{x+a} \times 12^{x+a}} </span>

This matches the given answer. Thus, the solution to the question is:

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Answer

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Exercise #2

Insert the corresponding expression:

(137×6×3)x+y= \left(\frac{13}{7\times6\times3}\right)^{x+y}=

Video Solution

Step-by-Step Solution

Let's start by examining the expression given in the question:

(137×6×3)x+y \left(\frac{13}{7\times6\times3}\right)^{x+y}

This expression is a power of a fraction. There is a general rule in exponents which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this rule, we will apply it to our original expression.

Given, a=13 a = 13 , b=7×6×3 b = 7\times6\times3 , and n=x+y n = x+y , we can rewrite our expression as:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

The solution to the question is:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

Answer

13x+y(7×6×3)x+y \frac{13^{x+y}}{\left(7\times6\times3\right)^{x+y}}

Exercise #3

Insert the corresponding expression:

(2×4×67×8×9)3x= \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}=

Video Solution

Step-by-Step Solution

Let's analyze the expression we are given:

(2×4×67×8×9)3x \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}

The expression is a power of a fraction. The rule for powers of a fraction is that each component of the fraction must be raised to the power separately. This can be expressed as:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Applying this rule to our expression, we have:

  • The numerator inside the power: 2×4×6 2 \times 4 \times 6
  • The denominator inside the power: 7×8×9 7 \times 8 \times 9

Therefore, raising each part to the power 3x3x gives us:

(2×4×6)3x(7×8×9)3x \frac{(2\times4\times6)^{3x}}{(7\times8\times9)^{3x}}

Thus, the simplified expression for the given equation is:

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

The solution to the question is: (2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Answer

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Exercise #4

Insert the corresponding expression:

1ax= \frac{1}{a^{-x}}=

Video Solution

Step-by-Step Solution

We begin with the expression: 1ax \frac{1}{a^{-x}} .
Our goal is to simplify this expression while converting any negative exponents into positive ones.

  • Recall the rule for negative exponents: an=1an a^{-n} = \frac{1}{a^n} .
  • Correspondingly, 1an=an \frac{1}{a^{-n}} = a^n .
  • Thus, in our expression 1ax \frac{1}{a^{-x}} , the negative exponent can be converted and flipped to the numerator by the rule: 1ax=ax \frac{1}{a^{-x}} = a^x .
Therefore, the expression evaluates to ax a^x .

The solution to the question is: ax a^x .

Answer

ax a^x

Exercise #5

Insert the corresponding expression:

(5×113×7)a= \left(\frac{5\times11}{3\times7}\right)^a=

Video Solution

Answer

A'+C' are correct

Exercise #6

Insert the corresponding expression:

(3×74×8)b+1= \left(\frac{3\times7}{4\times8}\right)^{b+1}=

Video Solution

Answer

3b+1×7b+14b+1×8b+1 \frac{3^{b+1}\times7^{b+1}}{4^{b+1}\times8^{b+1}}

Exercise #7

Insert the corresponding expression:

(2×87×19)2x+3y= \left(\frac{2\times8}{7\times19}\right)^{2x+3y}=

Video Solution

Answer

22x+3y×82x+3y72x+3y×192x+3y \frac{2^{2x+3y}\times8^{2x+3y}}{7^{2x+3y}\times19^{2x+3y}}

Exercise #8

Insert the corresponding expression:

(23)a= \left(\frac{2}{3}\right)^a=

Video Solution

Answer

2a3a \frac{2^a}{3^a}

Exercise #9

Insert the corresponding expression:

(34)x= \left(\frac{3}{4}\right)^x=

Video Solution

Answer

3x4x \frac{3^x}{4^x}

Exercise #10

Insert the corresponding expression:

(57)ax= \left(\frac{5}{7}\right)^{ax}=

Video Solution

Answer

5ax7ax \frac{5^{ax}}{7^{ax}}

Exercise #11

Insert the corresponding expression:

(59)2x+1= \left(\frac{5}{9}\right)^{2x+1}=

Video Solution

Answer

52x+192x+1 \frac{5^{2x+1}}{9^{2x+1}}

Exercise #12

Insert the corresponding expression:

(1119)a+3b= \left(\frac{11}{19}\right)^{a+3b}=

Video Solution

Answer

11a+3b19a+3b \frac{11^{a+3b}}{19^{a+3b}}

Exercise #13

Insert the corresponding expression:

(32×5)x= \left(\frac{3}{2\times5}\right)^x=

Video Solution

Answer

3x2x×5x \frac{3^x}{2^x\times5^x}

Exercise #14

Insert the corresponding expression:

(23×5×7)x= \left(\frac{2}{3\times5\times7}\right)^x=

Video Solution

Answer

2x3x×5x×7x \frac{2^x}{3^x\times5^x\times7^x}

Exercise #15

Insert the corresponding expression:

(2×4×57)a= \left(\frac{2\times4\times5}{7}\right)^a=

Video Solution

Answer

2a×4a×5a7a \frac{2^a\times4^a\times5^a}{7^a}

Exercise #16

Insert the corresponding expression:

(3×45×11×9)y= \left(\frac{3\times4}{5\times11\times9}\right)^y=

Video Solution

Answer

a'+b' are correct

Exercise #17

Insert the corresponding expression:

(2×7×215×6)x= \left(\frac{2\times7\times21}{5\times6}\right)^x=

Video Solution

Answer

2x×7x×21x5x×6x \frac{2^x\times7^x\times21^x}{5^x\times6^x}

Exercise #18

Insert the corresponding expression:

(5×6×79×11×13)b= \left(\frac{5\times6\times7}{9\times11\times13}\right)^b=

Video Solution

Answer

5b×6b×7b9b×11b×13b \frac{5^b\times6^b\times7^b}{9^b\times11^b\times13^b}

Exercise #19

Insert the corresponding expression:

(23×7×5)a+2= \left(\frac{2}{3\times7\times5}\right)^{a+2}=

Video Solution

Answer

2a+2(3×7×5)a+2 \frac{2^{a+2}}{\left(3\times7\times5\right)^{a+2}}

Exercise #20

Insert the corresponding expression:

(5×6×79)2x+1= \left(\frac{5\times6\times7}{9}\right)^{2x+1}=

Video Solution

Answer

a'+b' are correct