Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{11\times9}{10\times12}\right)^{x+a}= \)
Insert the corresponding expression:
\( \left(\frac{13}{7\times6\times3}\right)^{x+y}= \)
Insert the corresponding expression:
\( \)\( \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}= \)
Insert the corresponding expression:
\( \frac{1}{a^{-x}}= \)
Insert the corresponding expression:
\( \left(\frac{5\times11}{3\times7}\right)^a= \)
Insert the corresponding expression:
To solve the problem, we need to simplify the expression and write it in the form requested in the question.
We begin by using the exponent rule: . Applying this rule here:
Next, we can simplify the expression further by applying the power over a product rule: .
Applying this rule to both the numerator and denominator gives us:
Numerator:
Denominator:
Therefore, the entire expression becomes:
This matches the given answer. Thus, the solution to the question is:
Insert the corresponding expression:
Let's start by examining the expression given in the question:
This expression is a power of a fraction. There is a general rule in exponents which states:
Using this rule, we will apply it to our original expression.
Given, , , and , we can rewrite our expression as:
The solution to the question is:
Insert the corresponding expression:
Let's analyze the expression we are given:
The expression is a power of a fraction. The rule for powers of a fraction is that each component of the fraction must be raised to the power separately. This can be expressed as:
Applying this rule to our expression, we have:
Therefore, raising each part to the power gives us:
Thus, the simplified expression for the given equation is:
The solution to the question is:
Insert the corresponding expression:
We begin with the expression: .
Our goal is to simplify this expression while converting any negative exponents into positive ones.
Insert the corresponding expression:
A'+C' are correct
Insert the corresponding expression:
\( \left(\frac{3\times7}{4\times8}\right)^{b+1}= \)
Insert the corresponding expression:
\( \left(\frac{2\times8}{7\times19}\right)^{2x+3y}= \)
Insert the corresponding expression:
\( \left(\frac{2}{3}\right)^a= \)
Insert the corresponding expression:
\( \left(\frac{3}{4}\right)^x= \)
\( \)
Insert the corresponding expression:
\( \left(\frac{5}{7}\right)^{ax}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{5}{9}\right)^{2x+1}= \)
Insert the corresponding expression:
\( \left(\frac{11}{19}\right)^{a+3b}= \)
Insert the corresponding expression:
\( \left(\frac{3}{2\times5}\right)^x= \)
Insert the corresponding expression:
\( \left(\frac{2}{3\times5\times7}\right)^x= \)
Insert the corresponding expression:
\( \left(\frac{2\times4\times5}{7}\right)^a= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{3\times4}{5\times11\times9}\right)^y= \)
Insert the corresponding expression:
\( \left(\frac{2\times7\times21}{5\times6}\right)^x= \)
Insert the corresponding expression:
\( \left(\frac{5\times6\times7}{9\times11\times13}\right)^b= \)
Insert the corresponding expression:
\( \left(\frac{2}{3\times7\times5}\right)^{a+2}= \)
Insert the corresponding expression:
\( \left(\frac{5\times6\times7}{9}\right)^{2x+1}= \)
Insert the corresponding expression:
a'+b' are correct
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
a'+b' are correct