Examples with solutions for Powers of a Fraction: Applying the formula

Exercise #1

Insert the corresponding expression:

(13)3= \left(\frac{1}{3}\right)^3=

Video Solution

Step-by-Step Solution

To solve the expression (13)3 \left(\frac{1}{3}\right)^3 , we need to apply the rule for exponents of a fraction, which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this property, we can rewrite the fraction with its exponent as follows:

(13)3=1333 \left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3}

Now, calculate the powers of the numerator and the denominator separately:

  • 13=1 1^3 = 1

  • 33=27 3^3 = 27

Thus, putting it all together, we have:

1333=127 \frac{1^3}{3^3} = \frac{1}{27}

This shows that raising both the numerator and the denominator of a fraction to a power involves calculating the power of each part separately and then constructing a new fraction.

The solution to the question is: 127 \frac{1}{27}

Answer

127 \frac{1}{27}

Exercise #2

What is the result of the following power?

(23)3 (\frac{2}{3})^3

Video Solution

Step-by-Step Solution

To solve the given power expression, we need to apply the formula for powers of a fraction. The expression we are given is:
(23)3 \left(\frac{2}{3}\right)^3

Let's break down the steps:

  • When we raise a fraction to a power, we apply the exponent to both the numerator and the denominator separately. This means raising both 2 and 3 to the power of 3.
  • Thus, we calculate:
    23=8 2^3 = 8 and 33=27 3^3 = 27 .
  • Therefore, (23)3=2333=827 \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} .

So, the result of the expression (23)3 \left(\frac{2}{3}\right)^3 is 827 \frac{8}{27} .

Answer

827 \frac{8}{27}

Exercise #3

(26)3= (\frac{2}{6})^3=

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(26)3=(22×3)3 (\frac{2}{6})^3=(\frac{2}{2\times3})^3

We simplify:

(13)3=1333 (\frac{1}{3})^3=\frac{1^3}{3^3}

1×1×13×3×3=127 \frac{1\times1\times1}{3\times3\times3}=\frac{1}{27}

Answer

127 \frac{1}{27}

Exercise #4

(4274)2= (\frac{4^2}{7^4})^2=

Video Solution

Step-by-Step Solution

(4274)2=42×274×2=4478 (\frac{4^2}{7^4})^2=\frac{4^{2\times2}}{7^{4\times2}}=\frac{4^4}{7^8}

Answer

4478 \frac{4^4}{7^8}

Exercise #5

Insert the corresponding expression:

(68)2= \left(\frac{6}{8}\right)^2=

Video Solution

Answer

3664 \frac{36}{64}

Exercise #6

Insert the corresponding expression:

(32)3= \left(\frac{3}{2}\right)^3=

Video Solution

Answer

278 \frac{27}{8}

Exercise #7

Insert the corresponding expression:

(47)2= \left(\frac{4}{7}\right)^2=

Video Solution

Answer

1649 \frac{16}{49}

Exercise #8

Insert the corresponding expression:

(23)2= \left(\frac{2}{3}\right)^2=

Video Solution

Answer

49 \frac{4}{9}

Exercise #9

Insert the corresponding expression:

(12)2= \left(\frac{1}{2}\right)^2=

Video Solution

Answer

14 \frac{1}{4}

Exercise #10

Insert the corresponding expression:

(45)3= \left(\frac{4}{5}\right)^3=

Video Solution

Answer

64125 \frac{64}{125}

Exercise #11

Insert the corresponding expression:

(45)2= \left(\frac{4}{5}\right)^2=

Video Solution

Answer

1625 \frac{16}{25}

Exercise #12

Insert the corresponding expression:

(a×b2×x)3= \left(\frac{a\times b}{2\times x}\right)^3=

Video Solution

Answer

a3×b38×x3 \frac{a^3\times b^3}{8\times x^3}

Exercise #13

Insert the corresponding expression:

(a×32×x)3= \left(\frac{a\times3}{2\times x}\right)^3=

Video Solution

Answer

a3×278×x3 \frac{a^3\times27}{8\times x^3}

Exercise #14

Insert the corresponding expression:

(6x×y)2= \left(\frac{6}{x\times y}\right)^2=

Video Solution

Answer

36(x×y)2 \frac{36}{\left(x\times y\right)^2}

Exercise #15

Insert the corresponding expression:

(2×a3)2= \left(\frac{2\times a}{3}\right)^2=

Video Solution

Answer

All answers are correct

Exercise #16

(132)0(213)2(132)5=? (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?}

Video Solution

Answer

(213)3 (\frac{2}{13})^3

Exercise #17

3004(1300)4=? 300^{-4}\cdot(\frac{1}{300})^{-4}=?

Video Solution

Answer

1

More Questions