Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{1}{3}\right)^3= \)
What is the result of the following power?
\( (\frac{2}{3})^3 \)
\( (\frac{2}{6})^3= \)
\( (\frac{4^2}{7^4})^2= \)
Insert the corresponding expression:
\( \left(\frac{6}{8}\right)^2= \)
Insert the corresponding expression:
To solve the expression , we need to apply the rule for exponents of a fraction, which states:
Using this property, we can rewrite the fraction with its exponent as follows:
Now, calculate the powers of the numerator and the denominator separately:
Thus, putting it all together, we have:
This shows that raising both the numerator and the denominator of a fraction to a power involves calculating the power of each part separately and then constructing a new fraction.
The solution to the question is:
What is the result of the following power?
To solve the given power expression, we need to apply the formula for powers of a fraction. The expression we are given is:
Let's break down the steps:
So, the result of the expression is .
We use the formula:
We simplify:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{3}{2}\right)^3= \)
Insert the corresponding expression:
\( \left(\frac{4}{7}\right)^2= \)
Insert the corresponding expression:
\( \left(\frac{2}{3}\right)^2= \)
Insert the corresponding expression:
\( \left(\frac{1}{2}\right)^2= \)
Insert the corresponding expression:
\( \left(\frac{4}{5}\right)^3= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{4}{5}\right)^2= \)
Insert the corresponding expression:
\( \left(\frac{a\times b}{2\times x}\right)^3= \)
Insert the corresponding expression:
\( \left(\frac{a\times3}{2\times x}\right)^3= \)
Insert the corresponding expression:
\( \left(\frac{6}{x\times y}\right)^2= \)
Insert the corresponding expression:
\( \left(\frac{2\times a}{3}\right)^2= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
All answers are correct
\( (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?} \)
\( 300^{-4}\cdot(\frac{1}{300})^{-4}=? \)
1