(32)−4=?
\( (\frac{2}{3})^{-4}=\text{?} \)
\( 7^4\cdot8^3\cdot(\frac{1}{7})^4=\text{?} \)
\( (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?} \)
Insert the corresponding expression:
\( \left(\frac{4}{9}\right)^{-5}= \)
Insert the corresponding expression:
\( \left(\frac{10}{13}\right)^{-4}= \)
We use the formula:
Therefore, we obtain:
We use the formula:
Therefore, we obtain:
We use the formula:
We decompose the fraction inside of the parentheses:
We obtain:
We simplify the powers:
We obtain:
Remember that the number 1 in any power is equal to 1, thus we obtain:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{2}{3}\right)^{-11}= \)
Insert the corresponding expression:
\( \left(\frac{1}{4}\right)^{-2}= \)
Insert the corresponding expression:
\( \left(\frac{2}{5}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{3}{7}\right)^{-4}= \)
Insert the corresponding expression:
\( \left(\frac{1}{20}\right)^{-7}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{5}{7}\right)^{-7}= \)
Insert the corresponding expression:
\( \left(\frac{10}{13}\right)^{-2}= \)
Insert the corresponding expression:
\( \left(\frac{15}{21}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{1}{60}\right)^{-4}= \)
Insert the corresponding expression:
\( \left(\frac{2}{5}\right)^{-2}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \)\( \left(\frac{1}{3}\right)^{-4}= \)
Insert the corresponding expression:
\( \left(\frac{3}{8}\right)^{-5}= \)
Insert the corresponding expression:
\( \left(\frac{5}{6}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{10}{17}\right)^{-5}= \)
Insert the corresponding expression:
\( \left(\frac{8}{17\times13}\right)^{-6}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
A+B are correct