Examples with solutions for Powers of a Fraction: Calculating powers with negative exponents

Exercise #1

Insert the corresponding expression:

(1013)4= \left(\frac{10}{13}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve the expression (1013)4\left(\frac{10}{13}\right)^{-4}, we start by applying the rule for dividing exponents is:

104134\frac{10^{-4}}{13^{-4}}, which maintains the negative exponent but as separate components of fraction resulting in the same value.

Consequently, the expression (1013)4\left(\frac{10}{13}\right)^{-4} equates to 104134\frac{10^{-4}}{13^{-4}}.

By comparing this with the presented choices, we identify that option (2):

104134 \frac{10^{-4}}{13^{-4}}

matches correctly with our conversion of the original expression.

Therefore, the correct expression is 104134\frac{10^{-4}}{13^{-4}}.

Answer

104134 \frac{10^{-4}}{13^{-4}}

Exercise #2

Insert the corresponding expression:

(120)7= \left(\frac{1}{20}\right)^{-7}=

Video Solution

Step-by-Step Solution

To simplify the expression (120)7 \left(\frac{1}{20}\right)^{-7} , we will apply the rule for negative exponents. The key idea is that a negative exponent indicates taking the reciprocal and converting the exponent to a positive:

  • Start with the expression: (120)7 \left(\frac{1}{20}\right)^{-7} .
  • Apply the negative exponent rule: (1a)n=an \left(\frac{1}{a}\right)^{-n} = a^n .
  • For our expression: (120)7 \left(\frac{1}{20}\right)^{-7} becomes 207 20^7 .

Therefore, (120)7 \left(\frac{1}{20}\right)^{-7} simplifies to 207 20^7 .

Thus, the correct answer is 207 20^7 .

Answer

207 20^7

Exercise #3

Insert the corresponding expression:

(1013)2= \left(\frac{10}{13}\right)^{-2}=

Video Solution

Step-by-Step Solution

To solve the problem, apply the negative exponent rule:

  • For any fraction ab\frac{a}{b} with a negative exponent n-n, apply the rule: (ab)n=(ba)n\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}.

Apply this rule to the given expression (1013)2\left(\frac{10}{13}\right)^{-2}:

(1013)2=(1310)2 \left(\frac{10}{13}\right)^{-2} = \left(\frac{13}{10}\right)^{2}

Therefore, the correct expression with a positive exponent is (1310)2\left(\frac{13}{10}\right)^{2}.

In the provided choices, this is option:

  • (1310)2 \left(\frac{13}{10}\right)^2

Hence, the correct expression is (1310)2\left(\frac{13}{10}\right)^2.

Answer

(1310)2 \left(\frac{13}{10}\right)^2

Exercise #4

Insert the corresponding expression:

(1521)3= \left(\frac{15}{21}\right)^{-3}=

Video Solution

Step-by-Step Solution

To solve the expression (1521)3 \left(\frac{15}{21}\right)^{-3} , we will apply the rule for converting negative exponents into positive exponents.

Step 1: Recognize that the negative exponent indicates the reciprocal of the base raised to the positive equivalent of the exponent. Thus, we use the formula:

(ab)n=(ba)n\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n.

Step 2: Apply this formula to our expression:

(1521)3=(2115)3\left(\frac{15}{21}\right)^{-3} = \left(\frac{21}{15}\right)^3.

Therefore, the solution to the problem is (2115)3 \left(\frac{21}{15}\right)^3 , which corresponds to choice 3.

Answer

(2115)3 \left(\frac{21}{15}\right)^3

Exercise #5

Insert the corresponding expression:

(160)4= \left(\frac{1}{60}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve for (160)4 \left(\frac{1}{60}\right)^{-4} , we apply the rule for negative exponents.

Step 1: Use the negative exponent rule: For any non-zero number a a , an=1an a^{-n} = \frac{1}{a^n} . Thus,

(160)4=(601)4 \left(\frac{1}{60}\right)^{-4} = \left(\frac{60}{1}\right)^4 .

Step 2: Simplify (601)4\left(\frac{60}{1}\right)^4 by recognizing the identity 601=60\frac{60}{1} = 60, so it follows that:

(601)4=604 \left(\frac{60}{1}\right)^4 = 60^4 .

Therefore, the simplified expression is 604 60^4 .

The correct answer is 604 60^4

Answer

604 60^4

Exercise #6

Insert the corresponding expression:

(25)2= \left(\frac{2}{5}\right)^{-2}=

Video Solution

Step-by-Step Solution

To solve the problem of converting (25)2\left(\frac{2}{5}\right)^{-2} to positive exponents, we use the rule for negative exponents:

Negative exponent rule states:

  • (ab)n=(ba)n\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n — This indicates that we invert the fraction and change the sign of the exponent to positive.

Given expression: (25)2\left(\frac{2}{5}\right)^{-2}.

Application: By using the rule, the negative exponent instructs us to reciprocate the fraction:

(25)2=(52)2\left(\frac{2}{5}\right)^{-2} = \left(\frac{5}{2}\right)^{2}.

The positive exponent (2)(2) indicates the expression is squared. Thus, our action is complete with no further action required.

Thus, the correctly transformed expression of (25)2\left(\frac{2}{5}\right)^{-2} is indeed:

(52)2 \left(\frac{5}{2}\right)^2 .

Answer

(52)2 \left(\frac{5}{2}\right)^2

Exercise #7

Insert the corresponding expression:

(13)4= \left(\frac{1}{3}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given expression with a negative exponent.
  • Step 2: Apply the rule for negative exponents, which allows us to convert the expression into a positive exponent form.
  • Step 3: Perform the calculation of the new expression.

Now, let's work through each step:

Step 1: The expression given is (13)4 \left(\frac{1}{3}\right)^{-4} , which involves a negative exponent.

Step 2: According to the exponent rule (ab)n=(ba)n \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n , we can rewrite the expression with a positive exponent by inverting the fraction:

(13)4=(31)4=34 \left(\frac{1}{3}\right)^{-4} = \left(\frac{3}{1}\right)^4 = 3^4 .

Step 3: Calculate 34 3^4 .

The calculation 34 3^4 is as follows:

34=3×3×3×3=81 3^4 = 3 \times 3 \times 3 \times 3 = 81 .

However, since the problem specifically asks for the corresponding expression before calculation to numerical form, the answer remains 34 3^4 .

Therefore, the answer to the problem, in terms of an equivalent expression, is 34 3^4 .

Answer

34 3^4

Exercise #8

Insert the corresponding expression:

(38)5= \left(\frac{3}{8}\right)^{-5}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the given fraction and the negative exponent.
  • Step 2: Apply the conversion rule from negative to positive exponents on fractions.

Now, let's work through each step:
Step 1: The given expression is (38)5 \left(\frac{3}{8}\right)^{-5} . This indicates a fraction raised to a negative power.
Step 2: Applying the rule (ab)n=(ba)n(\frac{a}{b})^{-n} = (\frac{b}{a})^{n}, we invert the fraction and change the exponent to positive. This gives us the expression (83)5 \left(\frac{8}{3}\right)^5 .

Therefore, the solution to the problem is (83)5 \left(\frac{8}{3}\right)^5 .

Answer

(83)5 \left(\frac{8}{3}\right)^5

Exercise #9

Insert the corresponding expression:

(56)3= \left(\frac{5}{6}\right)^{-3}=

Video Solution

Step-by-Step Solution

To solve this problem, we need to convert the expression (56)3\left(\frac{5}{6}\right)^{-3} into a form with positive exponents.

The negative exponent rule states that xn=1xnx^{-n} = \frac{1}{x^n}. Applying this to our given fraction:

(56)3=(65)3\left(\frac{5}{6}\right)^{-3} = \left(\frac{6}{5}\right)^{3}.

This means we take the reciprocal of 56\frac{5}{6}, which is 65\frac{6}{5}, and then raise it to the power of 3.

Therefore, the correct expression is (65)3\left(\frac{6}{5}\right)^3.

This matches choice 1 in the list of possible answers.

Answer

(65)3 \left(\frac{6}{5}\right)^3

Exercise #10

Insert the corresponding expression:

(1017)5= \left(\frac{10}{17}\right)^{-5}=

Video Solution

Step-by-Step Solution

To solve the problem, we will follow these steps:

  • Step 1: Identify the expression and apply the rule for negative exponents.
  • Step 2: Take the reciprocal of the given fraction 1017 \frac{10}{17} .
  • Step 3: Raise the reciprocal to the positive power of 5.

Now, let's work through each step:
Step 1: We start with the problem expression (1017)5 \left(\frac{10}{17}\right)^{-5} . According to the laws of exponents, a negative exponent means the reciprocal of the base should be raised to the positive of that exponent.
Step 2: Take the reciprocal of 1017 \frac{10}{17} , which is 1710 \frac{17}{10} .
Step 3: Raise the reciprocal 1710 \frac{17}{10} to the power of 5, resulting in (1710)5 \left(\frac{17}{10}\right)^5 .

Therefore, the equivalent expression is (1710)5 \left(\frac{17}{10}\right)^5 .

Answer

(1710)5 \left(\frac{17}{10}\right)^5

Exercise #11

(23)4=? (\frac{2}{3})^{-4}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=(ba)n (\frac{a}{b})^{-n}=(\frac{b}{a})^n

Therefore, we obtain:

(32)4 (\frac{3}{2})^4

We use the formula:

(ba)n=bnan (\frac{b}{a})^n=\frac{b^n}{a^n}

Therefore, we obtain:

3424=3×3×3×32×2×2×2=8116 \frac{3^4}{2^4}=\frac{3\times3\times3\times3}{2\times2\times2\times2}=\frac{81}{16}

Answer

8116 \frac{81}{16}

Exercise #12

Insert the corresponding expression:

(3×75×8)3= \left(\frac{3\times7}{5\times8}\right)^{-3}=

Video Solution

Step-by-Step Solution

The expression we are given is (3×75×8)3 \left(\frac{3\times7}{5\times8}\right)^{-3} . In order to simplify it, we will apply the rules for negative exponents and powers of a fraction.

Step 1: Recognize that we are dealing with a negative exponent. The rule for negative exponents is an=1an a^{-n} = \frac{1}{a^n} . Thus, we invert the fraction and change the sign of the exponent:

(3×75×8)3=(5×83×7)3 \left(\frac{3 \times 7}{5 \times 8}\right)^{-3} = \left(\frac{5 \times 8}{3 \times 7}\right)^{3}

Step 2: Apply the power of a fraction rule, which states (ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} :

(5×83×7)3=(5×8)3(3×7)3 \left(\frac{5 \times 8}{3 \times 7}\right)^{3} = \frac{(5 \times 8)^3}{(3 \times 7)^3}

Step 3: Apply the power of a product rule, which allows us to distribute the exponent across the multiplication:

(5)3×(8)3(3)3×(7)3=53×8333×73 \frac{(5)^3 \times (8)^3}{(3)^3 \times (7)^3} = \frac{5^3 \times 8^3}{3^3 \times 7^3}

Step 4: Express each base raised to the power of -3 directly:

53×8333×73 \frac{5^{-3} \times 8^{-3}}{3^{-3} \times 7^{-3}}

Since the inverted version of the expression can also mean distributing -3 directly across the original fraction components, this can be rearranged as:

33×7353×83 \frac{3^{-3} \times 7^{-3}}{5^{-3} \times 8^{-3}}

Comparing with the given choices, the corresponding expression is choice 3:

33×7353×83 \frac{3^{-3}\times7^{-3}}{5^{-3}\times8^{-3}}

Therefore, the equivalent expression for the given problem is 33×7353×83 \frac{3^{-3}\times7^{-3}}{5^{-3}\times8^{-3}} .

Answer

33×7353×83 \frac{3^{-3}\times7^{-3}}{5^{-3}\times8^{-3}}

Exercise #13

Insert the corresponding expression:

(10×33×9)4= \left(\frac{10\times3}{3\times9}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this problem, we need to simplify the expression (10×33×9)4 \left(\frac{10 \times 3}{3 \times 9}\right)^{-4} .

  • Step 1: Simplify the expression inside the parentheses: 10×33×9=3027=109 \frac{10 \times 3}{3 \times 9} = \frac{30}{27} = \frac{10}{9} .
  • Step 2: We now have (109)4 \left(\frac{10}{9}\right)^{-4} .
  • Step 3: Apply the rule for negative exponents: (109)4=(910)4 \left(\frac{10}{9}\right)^{-4} = \left(\frac{9}{10}\right)^4 .
  • Step 4: Apply the power of a quotient rule: (910)4=94104\left(\frac{9}{10}\right)^4 = \frac{9^4}{10^4}.
  • Step 5: Expand using exponentiation properties: 94104=(32)4104=38104\frac{9^4}{10^4} = \frac{(3^2)^4}{10^4} = \frac{3^8}{10^4}.
  • Step 6: Comparing with the given choices, apply rules uniformly: distribute 44 across numerators and denominators of the specific expression directly.
  • Step 7: Write using property: (10×33×9)4=104×3434×94\left(\frac{10 \times 3}{3 \times 9}\right)^{-4} = \frac{10^{-4}\times3^{-4}}{3^{-4}\times9^{-4}}.

Therefore, the correct simplified expression is 104×3434×94\frac{10^{-4}\times3^{-4}}{3^{-4}\times9^{-4}}.

Answer

104×3434×94 \frac{10^{-4}\times3^{-4}}{3^{-4}\times9^{-4}}

Exercise #14

Insert the corresponding expression:

(4×65×10)6= \left(\frac{4\times6}{5\times10}\right)^{-6}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Simplify the original expression inside the parentheses.
  • Step 2: Apply the negative exponent to each factor in the fraction.
  • Step 3: Use exponent rules to rewrite the expression.

Now, let's work through each step:
Step 1: The original expression is (4×65×10)6\left(\frac{4 \times 6}{5 \times 10}\right)^{-6}. Simplifying inside the fraction gives us 2450\frac{24}{50}. However, we will work with the original form for clarity.
Step 2: Apply the exponent of 6-6 to each factor separately. This means (4×6)6(4\times6)^{-6} in the numerator and (5×10)6(5\times10)^{-6} in the denominator.
Step 3: Use the rule (ab)n=an×bn(ab)^n = a^n \times b^n. Thus, we have: (4×6)6=46×66 (4 \times 6)^{-6} = 4^{-6} \times 6^{-6} (5×10)6=56×106 (5 \times 10)^{-6} = 5^{-6} \times 10^{-6} Combining these gives the full expression: 46×6656×106 \frac{4^{-6} \times 6^{-6}}{5^{-6} \times 10^{-6}}

Therefore, the simplified form of the given expression and the correct choice is 46×6656×106 \frac{4^{-6} \times 6^{-6}}{5^{-6} \times 10^{-6}} .

Answer

46×6656×106 \frac{4^{-6}\times6^{-6}}{5^{-6}\times10^{-6}}

Exercise #15

Insert the corresponding expression:

(3×65)4= \left(\frac{3\times6}{5}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this problem, let's break down the expression and apply the rules of exponents:

Step-by-Step Solution:

  • Step 1: Understand that the expression given is (3×65)4\left(\frac{3 \times 6}{5}\right)^{-4}.
  • Step 2: Simplify the fraction 3×65\frac{3 \times 6}{5} as a single fraction, which is already given.
  • Step 3: Use the property of negative exponents: (ab)n=(ba)n\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}. This lets us convert the expression.
  • Step 4: Apply the negative exponent 4-4 to each component inside the fraction: (3×6)4(3 \times 6)^{-4} becomes 34×643^{-4} \times 6^{-4} and the denominator 545^{-4}.

Combining these steps results in the expression:

34×6454\frac{3^{-4} \times 6^{-4}}{5^{-4}}

This matches choice 3, which is the correct answer.

Therefore, the solution to the problem is 34×6454\frac{3^{-4} \times 6^{-4}}{5^{-4}}.

Answer

34×6454 \frac{3^{-4}\times6^{-4}}{5^{-4}}

Exercise #16

Insert the corresponding expression:

(14×6×9)4= \left(\frac{1}{4\times6\times9}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this expression, we need to apply the rules of exponents to simplify (14×6×9)4\left(\frac{1}{4 \times 6 \times 9}\right)^{-4}.

First, using the power of a fraction rule (ab)n=anbn\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, we express each term separately as follows:

(4×6×9)4=44×64×94 (4 \times 6 \times 9)^{-4} = 4^{-4} \times 6^{-4} \times 9^{-4}

Therefore, the original negative exponent transforms to a multiplication of three positive exponents in the denominator represented as:

1444×64×94\frac{1^{-4}}{4^{-4} \times 6^{-4} \times 9^{-4}}

Thus, the corresponding expression in terms of powers with negative exponents is:

1444×64×94\frac{1^{-4}}{4^{-4} \times 6^{-4} \times 9^{-4}}

The correct answer is Choice 4.

Answer

1444×64×94 \frac{1^{-4}}{4^{-4}\times6^{-4}\times9^{-4}}

Exercise #17

Insert the corresponding expression:

(35×8×7)2= \left(\frac{3}{5\times8\times7}\right)^{-2}=

Video Solution

Step-by-Step Solution

To solve this problem, let's break down the expression (35×8×7)2 \left(\frac{3}{5 \times 8 \times 7}\right)^{-2} :

  • Step 1: Recognize that we have a fraction raised to a negative exponent.
  • Step 2: Apply the power of a fraction rule: (ab)n=anbn\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.
  • Step 3: Specifically, apply the rule with a negative exponent: (35×8×7)2=32(5×8×7)2\left(\frac{3}{5 \times 8 \times 7}\right)^{-2} = \frac{3^{-2}}{(5 \times 8 \times 7)^{-2}}.
  • Step 4: Use the negative exponent rule for each element in the expression (5×8×7)2=52×82×72(5 \times 8 \times 7)^{-2} = 5^{-2} \times 8^{-2} \times 7^{-2}.

This gives us the expression: 3252×82×72\frac{3^{-2}}{5^{-2} \times 8^{-2} \times 7^{-2}}.

Therefore, the correct expression is 3252×82×72\frac{3^{-2}}{5^{-2} \times 8^{-2} \times 7^{-2}}.

Answer

3252×82×72 \frac{3^{-2}}{5^{-2}\times8^{-2}\times7^{-2}}

Exercise #18

Insert the corresponding expression:

(7×11×193×12×15)4= \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}=

Video Solution

Step-by-Step Solution

The given expression is:
(7×11×193×12×15)4 \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}

To solve this expression, we need to apply the rules of exponents, specifically the rule for powers of a fraction. For any fraction(ab)n \left(\frac{a}{b}\right)^{-n} , the expression is equivalent to(ba)n \left(\frac{b}{a}\right)^n .
Therefore, negative exponents indicate that the fraction should be flipped and raised to the positive of that exponent.

Substitute the terms into this formula:
1. Flip the fraction: (3×12×157×11×19) \left(\frac{3\times12\times15}{7\times11\times19}\right)
2. Raise both numerator and denominator to the power of 4:
Thus, we have:
(3×12×157×11×19)4 \left(\frac{3\times12\times15}{7\times11\times19}\right)^{4}

Now evaluating each term individually:
- In the numerator:
- 34×124×154 3^4\times12^4\times15^4
- In the denominator:
- 74×114×194 7^4\times11^4\times19^4

Applying the negative exponent rule, each individual factor in both numerator and denominator should be inverted, altering the exponents to negative:
1. Numerator becomes: 34×124×154 3^{-4}\times12^{-4}\times15^{-4}
2. Denominator becomes: 74×114×194 7^{-4}\times11^{-4}\times19^{-4}

Rewriting the expression, we achieve:
74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

This matches precisely the provided solution.

The solution to the question is:74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Answer

74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Exercise #19

Insert the corresponding expression:

(49)5= \left(\frac{4}{9}\right)^{-5}=

Video Solution

Answer

4595 \frac{4^{-5}}{9^{-5}}

Exercise #20

Insert the corresponding expression:

(23)11= \left(\frac{2}{3}\right)^{-11}=

Video Solution

Answer

211311 \frac{2^{-11}}{3^{-11}}