Exponents Rules - Examples, Exercises and Solutions

Definition of Exponentiation

Exponents are a way to write the multiplication of a term by itself several times in a shortened form.

The number that is multiplied by itself is called the base, while the number of times the base is multiplied is called the exponent.

A - Exponentiation

an=aaa a^n=a\cdot a\cdot a ... (n times)

For example:

5555=54 5\cdot5\cdot5\cdot5=5^4

5 5 is the base, while 4 4 is the exponent.

In this case, the number 5 5 is multiplied by itself 4 4 times and, therefore, it is expressed as 5 5 to the fourth power or 5 5 to the power of 4 4 .

Practice Exponents Rules

Examples with solutions for Exponents Rules

Exercise #1

2423= \frac{2^4}{2^3}=

Video Solution

Step-by-Step Solution

Let's keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Remember that any number raised to the 1st power is equal to the number itself, meaning that:

b1=b b^1=b Therefore, in the problem we obtain:

21=2 2^1=2 Therefore, the correct answer is option a.

Answer

2 2

Exercise #2

8132= \frac{81}{3^2}=

Video Solution

Step-by-Step Solution

First, we recognize that 81 is a power of the number 3, which means that:

34=81 3^4=81 We replace in the problem:

8132=3432 \frac{81}{3^2}=\frac{3^4}{3^2} Keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

3432=342=32 \frac{3^4}{3^2}=3^{4-2}=3^2 Therefore, the correct answer is option b.

Answer

32 3^2

Exercise #3

(35)4= (3^5)^4=

Video Solution

Step-by-Step Solution

To solve the exercise we use the power property:(an)m=anm (a^n)^m=a^{n\cdot m}

We use the property with our exercise and solve:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Answer

320 3^{20}

Exercise #4

(62)13= (6^2)^{13}=

Video Solution

Step-by-Step Solution

We use the formula:

(an)m=an×m (a^n)^m=a^{n\times m}

Therefore, we obtain:

62×13=626 6^{2\times13}=6^{26}

Answer

626 6^{26}

Exercise #5

(26)3= (\frac{2}{6})^3=

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(26)3=(22×3)3 (\frac{2}{6})^3=(\frac{2}{2\times3})^3

We simplify:

(13)3=1333 (\frac{1}{3})^3=\frac{1^3}{3^3}

1×1×13×3×3=127 \frac{1\times1\times1}{3\times3\times3}=\frac{1}{27}

Answer

127 \frac{1}{27}

Exercise #6

50= 5^0=

Video Solution

Step-by-Step Solution

We use the power property:

X0=1 X^0=1 We apply it to the problem:

50=1 5^0=1 Therefore, the correct answer is C.

Answer

1 1

Exercise #7

(4274)2= (\frac{4^2}{7^4})^2=

Video Solution

Step-by-Step Solution

(4274)2=42×274×2=4478 (\frac{4^2}{7^4})^2=\frac{4^{2\times2}}{7^{4\times2}}=\frac{4^4}{7^8}

Answer

4478 \frac{4^4}{7^8}

Exercise #8

(14)1 (\frac{1}{4})^{-1}

Video Solution

Step-by-Step Solution

We use the power property for a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We will write the fraction in parentheses as a negative power with the help of the previously mentioned power:

14=141=41 \frac{1}{4}=\frac{1}{4^1}=4^{-1} We return to the problem, where we obtained:

(14)1=(41)1 \big(\frac{1}{4}\big)^{-1}=(4^{-1})^{-1} We continue and use the power property of an exponent raised to another exponent:

(am)n=amn (a^m)^n=a^{m\cdot n} And we apply it in the problem:

(41)1=411=41=4 (4^{-1})^{-1}=4^{-1\cdot-1}=4^1=4 Therefore, the correct answer is option d.

Answer

4 4

Exercise #9

52 5^{-2}

Video Solution

Step-by-Step Solution

We use the property of powers of a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the problem:

52=152=125 5^{-2}=\frac{1}{5^2}=\frac{1}{25}

Therefore, the correct answer is option d.

Answer

125 \frac{1}{25}

Exercise #10

41=? 4^{-1}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

41=141=14 4^{-1}=\frac{1}{4^1}=\frac{1}{4} We can therefore deduce that the correct answer is option B.

Answer

14 \frac{1}{4}

Exercise #11

724=? 7^{-24}=\text{?}

Video Solution

Step-by-Step Solution

Using the rules of negative exponents: how to raise a number to a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the problem:

724=1724 7^{-24}=\frac{1}{7^{24}} Therefore, the correct answer is option D.

Answer

1724 \frac{1}{7^{24}}

Exercise #12

192=? 19^{-2}=\text{?}

Video Solution

Step-by-Step Solution

In order to solve the exercise, we use the negative exponent rule.

an=1an a^{-n}=\frac{1}{a^n}

We apply the rule to the given exercise:

192=1192 19^{-2}=\frac{1}{19^2}

We can then continue and calculate the exponent.

1192=1361 \frac{1}{19^2}=\frac{1}{361}

Answer

1361 \frac{1}{361}

Exercise #13

183=? \frac{1}{8^3}=\text{?}

Video Solution

Step-by-Step Solution

We use the negative exponent rule.

bn=1bn b^{-n}=\frac{1}{b^n}

We apply it to the problem in the opposite sense.:

183=83 \frac{1}{8^3}=8^{-3}

Therefore, the correct answer is option A.

Answer

83 8^{-3}

Exercise #14

129=? \frac{1}{2^9}=\text{?}

Video Solution

Step-by-Step Solution

We use the power property for a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the given expression:

129=29 \frac{1}{2^9}=2^{-9}

Therefore, the correct answer is option A.

Answer

29 2^{-9}

Exercise #15

1123=? \frac{1}{12^3}=\text{?}

Video Solution

Step-by-Step Solution

To begin with, we must remind ourselves of the Negative Exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the given expression :

1123=123 \frac{1}{12^3}=12^{-3} Therefore, the correct answer is option A.

Answer

123 12^{-3}