Examples with solutions for Powers of a Fraction: Combination of different bases

Exercise #1

Insert the corresponding expression:

24×3574×115= \frac{2^4\times3^5}{7^4\times11^5}=

Video Solution

Step-by-Step Solution

To solve the problem, we will utilize the properties of exponents to express the given fraction properly.

The given expression is 24×3574×115 \frac{2^4 \times 3^5}{7^4 \times 11^5} . Our goal is to rewrite this expression using properties of exponents.

Let's break it down into two separate expressions based on the properties of division of exponents:

  • 2474=(27)4\frac{2^4}{7^4} = \left(\frac{2}{7}\right)^4 because ambm=(ab)m\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m.
  • 35115=(311)5\frac{3^5}{11^5} = \left(\frac{3}{11}\right)^5 for the same reasons as above.

By rewriting the original expression using these properties, we have:

24×3574×115=(27)4×(311)5 \frac{2^4 \times 3^5}{7^4 \times 11^5} = \left(\frac{2}{7}\right)^4 \times \left(\frac{3}{11}\right)^5 .

Therefore, the expression can be rewritten as (27)4×(311)5 \left(\frac{2}{7}\right)^4 \times \left(\frac{3}{11}\right)^5 . This corresponds to choice 3 in the provided options.

The correct transformation of the expression is effectively represented and confirmed with the properties of exponents.

Answer

(27)4×(311)5 \left(\frac{2}{7}\right)^4\times\left(\frac{3}{11}\right)^5

Exercise #2

Insert the corresponding expression:

87×136196×37= \frac{8^7\times13^6}{19^6\times3^7}=

Video Solution

Step-by-Step Solution

To solve the problem, we apply the properties of exponents and simplify each component of the fraction separately.

Step 1: Analyze the expression.

  • The given expression is 87×136196×37\frac{8^7\times13^6}{19^6\times3^7}.
  • We need to simplify this using exponent rules.

Step 2: Apply the rule of exponents to simplify each pair of terms.

  • Simplify the expression 8737\frac{8^7}{3^7} using the rule ambm=(ab)m\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m to get (83)7\left(\frac{8}{3}\right)^7.
  • Simplify 136196\frac{13^6}{19^6} to get (1319)6\left(\frac{13}{19}\right)^6.

Step 3: Combine the simplified components into a single expression.

  • The expression becomes (83)7×(1319)6\left(\frac{8}{3}\right)^7\times\left(\frac{13}{19}\right)^6.

choice 1 : The simplified expression matches choice (83)7×(1319)6 \left(\frac{8}{3}\right)^7\times\left(\frac{13}{19}\right)^6 , which means this is the correct answer.

Therefore, the simplified expression is (83)7×(1319)6 \left(\frac{8}{3}\right)^7\times\left(\frac{13}{19}\right)^6 .

Answer

(83)7×(1319)6 \left(\frac{8}{3}\right)^7\times\left(\frac{13}{19}\right)^6

Exercise #3

Insert the corresponding expression:

22×25×3632×45= \frac{2^2\times2^5\times3^6}{3^2\times4^5}=

Video Solution

Answer

(23)2×(24)5×36 \left(\frac{2}{3}\right)^2\times\left(\frac{2}{4}\right)^5\times3^6

Exercise #4

Insert the corresponding expression:

93×45×7325×83×43= \frac{9^3\times4^5\times7^3}{2^5\times8^3\times4^3}=

Video Solution

Answer

(9×78×4)3×(42)5 \left(\frac{9\times7}{8\times4}\right)^3\times\left(\frac{4}{2}\right)^5