Examples with solutions for Powers of a Fraction: Variable in the base of the power

Exercise #1

Insert the corresponding expression:

a5×x575×b5= \frac{a^5\times x^5}{7^5\times b^5}=

Video Solution

Step-by-Step Solution

To solve this problem, our goal is to express the given quotient of powers in a simplified form using exponent laws.

  • Step 1: Understand the original expression. We have a5×x575×b5\frac{a^5 \times x^5}{7^5 \times b^5}.
  • Step 2: Recognize the structure. Notice that both the numerator and denominator are raised to the fifth power.
  • Step 3: Apply the property of exponents for quotients and products, which states that (mn)k=mknk\left(\frac{m}{n}\right)^k = \frac{m^k}{n^k} and (mn)k=mknk(m \cdot n)^k = m^k \cdot n^k.
  • Step 4: Rewrite the expression as a single fraction raised to the power of 5. Since each term in the numerator and denominator is raised to the fifth power separately, we combine them under a single power:
    • Numerator: a5×x5=(a×x)5a^5 \times x^5 = (a \times x)^5
    • Denominator: 75×b5=(7×b)57^5 \times b^5 = (7 \times b)^5
    • Therefore, a5×x575×b5=(a×x7×b)5\frac{a^5 \times x^5}{7^5 \times b^5} = \left(\frac{a \times x}{7 \times b}\right)^5.

Thus, the expression can be written as: (a×x7×b)5\left(\frac{a \times x}{7 \times b}\right)^5.

Now, comparing this with the answer choices provided:

  • Choice 1: (a×x)57×b5\frac{(a \times x)^5}{7 \times b^5} - does not match, as it retains the separate powers incorrectly.
  • Choice 2: (a×x7×b)5\left(\frac{a \times x}{7 \times b}\right)^5 - matches perfectly as derived.
  • Choice 3: a×x5(7×b)5\frac{a \times x^5}{(7 \times b)^5} - incorrect form compared to derived structure.
  • Choice 4: 7×(a×xb)57 \times \left(\frac{a \times x}{b}\right)^5 - unrelated format, doesn't match.

The correct choice is therefore Choice 2. This matches our derived expression using the laws of exponents correctly.

Answer

(a×x7×b)5 \left(\frac{a\times x}{7\times b}\right)^5

Exercise #2

Insert the corresponding expression:

1ax= \frac{1}{a^{-x}}=

Video Solution

Step-by-Step Solution

We begin with the expression: 1ax \frac{1}{a^{-x}} .
Our goal is to simplify this expression while converting any negative exponents into positive ones.

  • Recall the rule for negative exponents: an=1an a^{-n} = \frac{1}{a^n} .
  • Correspondingly, 1an=an \frac{1}{a^{-n}} = a^n .
  • Thus, in our expression 1ax \frac{1}{a^{-x}} , the negative exponent can be converted and flipped to the numerator by the rule: 1ax=ax \frac{1}{a^{-x}} = a^x .
Therefore, the expression evaluates to ax a^x .

The solution to the question is: ax a^x .

Answer

ax a^x

Exercise #3

Insert the corresponding expression:

(xy)8= \left(\frac{x}{y}\right)^8=

Video Solution

Answer

x8y8 \frac{x^8}{y^8}

Exercise #4

Insert the corresponding expression:

(ab)9= \left(\frac{a}{b}\right)^9=

Video Solution

Answer

a9b9 \frac{a^9}{b^9}

Exercise #5

Insert the corresponding expression:

(4a×b)2= \left(\frac{4}{a\times b}\right)^2=

Video Solution

Answer

42(a×b)2 \frac{4^2}{\left(a\times b\right)^2}

Exercise #6

Insert the corresponding expression:

(5x×y)5= \left(\frac{5}{x\times y}\right)^5=

Video Solution

Answer

a'+b' are correct

Exercise #7

Insert the corresponding expression:

(a×x7)6= \left(\frac{a\times x}{7}\right)^6=

Video Solution

Answer

a6×x676 \frac{a^6\times x^6}{7^6}

Exercise #8

Insert the corresponding expression:

(a×bx×y)2= \left(\frac{a\times b}{x\times y}\right)^2=

Video Solution

Answer

A'+C' are correct

Exercise #9

Insert the corresponding expression:

(x×ab×y)4= \left(\frac{x\times a}{b\times y}\right)^4=

Video Solution

Answer

x4×a4(b×y)4 \frac{x^4\times a^4}{\left(b\times y\right)^4}

Exercise #10

Insert the corresponding expression:

(a3)2= \left(\frac{a}{3}\right)^2=

Video Solution

Answer

a232 \frac{a^2}{3^2}

Exercise #11

Insert the corresponding expression:

(b5)4= \left(\frac{b}{5}\right)^4=

Video Solution

Answer

b454 \frac{b^4}{5^4}

Exercise #12

Insert the corresponding expression:

(6x)3= \left(\frac{6}{x}\right)^3=

Video Solution

Answer

63x3 \frac{6^3}{x^3}

Exercise #13

Insert the corresponding expression:

(5y)7= \left(\frac{5}{y}\right)^7=

Video Solution

Answer

57y7 \frac{5^7}{y^7}

Exercise #14

Insert the corresponding expression:

(a×b2×x)3= \left(\frac{a\times b}{2\times x}\right)^3=

Video Solution

Answer

a3×b38×x3 \frac{a^3\times b^3}{8\times x^3}

Exercise #15

Insert the corresponding expression:

(a×32×x)3= \left(\frac{a\times3}{2\times x}\right)^3=

Video Solution

Answer

a3×278×x3 \frac{a^3\times27}{8\times x^3}

Exercise #16

Insert the corresponding expression:

(6x×y)2= \left(\frac{6}{x\times y}\right)^2=

Video Solution

Answer

36(x×y)2 \frac{36}{\left(x\times y\right)^2}

Exercise #17

Insert the corresponding expression:

(2×a3)2= \left(\frac{2\times a}{3}\right)^2=

Video Solution

Answer

All answers are correct

Exercise #18

Insert the corresponding expression:

a7×x757= \frac{a^7\times x^7}{5^7}=

Video Solution

Answer

A+B are correct

Exercise #19

Insert the corresponding expression:

38×a8x8×58= \frac{3^8\times a^8}{x^8\times5^8}=

Video Solution

Answer

(3×ax×5)8 \left(\frac{3\times a}{x\times5}\right)^8

Exercise #20

Insert the corresponding expression:

49×b9x9×y9= \frac{4^9\times b^9}{x^9\times y^9}=

Video Solution

Answer

a'+b' are correct