Power of a Quotient Rule for Exponents - Examples, Exercises and Solutions

Understanding Power of a Quotient Rule for Exponents

Complete explanation with examples

Division of Exponents with the Same Base

When we encounter exercises or expressions with terms that have the same base and between them the sign of division or fraction line, we can subtract the exponents.
We will subtract the exponent in the denominator from the exponent in the numerator.
That is:
"exponent of the denominator - exponent of the numerator" = new exponent
The result obtained from the subtraction is the new exponent and we will apply it to the original base.

Formula of the property:

aman=a(mn)\frac {a^m}{a^n} =a^{(m-n)}

This property also concerns algebraic expressions.

Detailed explanation

Practice Power of a Quotient Rule for Exponents

Test your knowledge with 40 quizzes

\( \frac{3^5}{3^2}= \)

Examples with solutions for Power of a Quotient Rule for Exponents

Step-by-step solutions included
Exercise #1

2423= \frac{2^4}{2^3}=

Step-by-Step Solution

Let's keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n}

We apply it in the problem:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1

Remember that any number raised to the 1st power is equal to the number itself, meaning that:

b1=b b^1=b

Therefore, in the problem we obtain:

21=2 2^1=2

Therefore, the correct answer is option a.

Answer:

2 2

Video Solution
Exercise #2

9993= \frac{9^9}{9^3}=

Step-by-Step Solution

Note that in the fraction and its denominator, there are terms with the same base, so we will use the law of exponents for division between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n}

Let's apply it to the problem:

9993=993=96 \frac{9^9}{9^3}=9^{9-3}=9^6

Therefore, the correct answer is b.

Answer:

96 9^6

Video Solution
Exercise #3

Insert the corresponding expression:

13171314= \frac{13^{17}}{13^{14}}=

Step-by-Step Solution

To solve the expression 13171314 \frac{13^{17}}{13^{14}} , we use the Power of a Quotient Rule for Exponents. This rule states that aman=amn \frac{a^m}{a^n} = a^{m-n} , where a a is a non-zero number, and m m and n n are integers.


In the given expression, a=13 a = 13 , m=17 m = 17 , and n=14 n = 14 . Applying the power of a quotient rule, we perform the following calculation:


Subtract the exponent in the denominator from the exponent in the numerator: 1714=3 17 - 14 = 3 .


This simplification leads us to:

131714=133 13^{17-14} = 13^3


Therefore, the final simplified expression is 133 13^3 .

Answer:

133 13^3

Video Solution
Exercise #4

Simplify the following:

a4a6= \frac{a^4}{a^{-6}}=

Step-by-Step Solution

Since a division operation between two terms with identical bases is required, we will use the power property to divide terms with identical bases:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Note that using this property is only possible when the division is performed between terms with identical bases.

We return to the problem and apply the power property:

a4a6=a4(6)=a4+6=a10 \frac{a^4}{a^{-6}}=a^{4-(-6)}=a^{4+6}=a^{10} Therefore, the correct answer is option C.

Answer:

a10 a^{10}

Video Solution
Exercise #5

Insert the corresponding expression:

81688= \frac{8^{16}}{8^8}=

Step-by-Step Solution

The given expression is 81688 \frac{8^{16}}{8^8} . To solve this, we apply the Power of a Quotient Rule for Exponents.

This rule states that when dividing two exponential expressions with the same base, we subtract the exponent of the denominator from the exponent of the numerator. Mathematically, it can be expressed as:

  • aman=amn \frac{a^m}{a^n} = a^{m-n}

In this problem, the base 8 8 is the same in both the numerator and the denominator, so we can apply this rule.

Subtract the exponent of the denominator from the exponent of the numerator:

  • 168=8 16 - 8 = 8

Therefore, the simplified form of the given expression is:

  • 88 8^8

Thus, the answer is 88 8^8 .

Answer:

88 8^8

Video Solution

More Power of a Quotient Rule for Exponents Questions

Continue Your Math Journey

Suggested Topics to Practice in Advance

Practice by Question Type