Examples with solutions for Powers of a Fraction: System of equations with no solution

Exercise #1

Insert the corresponding expression:

(11×910×12)x+a= \left(\frac{11\times9}{10\times12}\right)^{x+a}=

Step-by-Step Solution

To solve the problem, we need to simplify the expression (11×910×12)x+a \left(\frac{11\times9}{10\times12}\right)^{x+a} and write it in the form requested in the question.

We begin by using the exponent rule: (ab)n=anbn (\frac{a}{b})^n = \frac{a^n}{b^n} . Applying this rule here:

<spanclass="katex">(11×910×12)x+a=(11×9)x+a(10×12)x+a</span><span class="katex"> \left(\frac{11\times9}{10\times12}\right)^{x+a} = \frac{(11\times9)^{x+a}}{(10\times12)^{x+a}} </span>

Next, we can simplify the expression further by applying the power over a product rule: (ab)n=an×bn (ab)^n = a^n \times b^n .

Applying this rule to both the numerator and denominator gives us:

Numerator: (11×9)x+a=11x+a×9x+a (11\times9)^{x+a} = 11^{x+a} \times 9^{x+a}

Denominator: (10×12)x+a=10x+a×12x+a (10\times12)^{x+a} = 10^{x+a} \times 12^{x+a}

Therefore, the entire expression becomes:

<spanclass="katex">11x+a×9x+a10x+a×12x+a</span><span class="katex"> \frac{11^{x+a} \times 9^{x+a}}{10^{x+a} \times 12^{x+a}} </span>

This matches the given answer. Thus, the solution to the question is:

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Answer

11x+a×9x+a10x+a×12x+a \frac{11^{x+a}\times9^{x+a}}{10^{x+a}\times12^{x+a}}

Exercise #2

Insert the corresponding expression:

(137×6×3)x+y= \left(\frac{13}{7\times6\times3}\right)^{x+y}=

Step-by-Step Solution

Let's start by examining the expression given in the question:

(137×6×3)x+y \left(\frac{13}{7\times6\times3}\right)^{x+y}

This expression is a power of a fraction. There is a general rule in exponents which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this rule, we will apply it to our original expression.

Given, a=13 a = 13 , b=7×6×3 b = 7\times6\times3 , and n=x+y n = x+y , we can rewrite our expression as:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

The solution to the question is:

13x+y(7×6×3)x+y \frac{13^{x+y}}{(7\times6\times3)^{x+y}}

Answer

13x+y(7×6×3)x+y \frac{13^{x+y}}{\left(7\times6\times3\right)^{x+y}}

Exercise #3

Insert the corresponding expression:

(2×4×67×8×9)3x= \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}=

Step-by-Step Solution

Let's analyze the expression we are given:

(2×4×67×8×9)3x \left(\frac{2\times4\times6}{7\times8\times9}\right)^{3x}

The expression is a power of a fraction. The rule for powers of a fraction is that each component of the fraction must be raised to the power separately. This can be expressed as:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Applying this rule to our expression, we have:

  • The numerator inside the power: 2×4×6 2 \times 4 \times 6
  • The denominator inside the power: 7×8×9 7 \times 8 \times 9

Therefore, raising each part to the power 3x3x gives us:

(2×4×6)3x(7×8×9)3x \frac{(2\times4\times6)^{3x}}{(7\times8\times9)^{3x}}

Thus, the simplified expression for the given equation is:

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

The solution to the question is: (2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Answer

(2×4×6)3x(7×8×9)3x \frac{\left(2\times4\times6\right)^{3x}}{\left(7\times8\times9\right)^{3x}}

Exercise #4

Insert the corresponding expression:

(7×11×193×12×15)4= \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}=

Step-by-Step Solution

The given expression is:
(7×11×193×12×15)4 \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}

To solve this expression, we need to apply the rules of exponents, specifically the rule for powers of a fraction. For any fraction(ab)n \left(\frac{a}{b}\right)^{-n} , the expression is equivalent to(ba)n \left(\frac{b}{a}\right)^n .
Therefore, negative exponents indicate that the fraction should be flipped and raised to the positive of that exponent.

Substitute the terms into this formula:
1. Flip the fraction: (3×12×157×11×19) \left(\frac{3\times12\times15}{7\times11\times19}\right)
2. Raise both numerator and denominator to the power of 4:
Thus, we have:
(3×12×157×11×19)4 \left(\frac{3\times12\times15}{7\times11\times19}\right)^{4}

Now evaluating each term individually:
- In the numerator:
- 34×124×154 3^4\times12^4\times15^4
- In the denominator:
- 74×114×194 7^4\times11^4\times19^4

Applying the negative exponent rule, each individual factor in both numerator and denominator should be inverted, altering the exponents to negative:
1. Numerator becomes: 34×124×154 3^{-4}\times12^{-4}\times15^{-4}
2. Denominator becomes: 74×114×194 7^{-4}\times11^{-4}\times19^{-4}

Rewriting the expression, we achieve:
74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

This matches precisely the provided solution.

The solution to the question is:74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Answer

74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Exercise #5

Insert the corresponding expression:

(12)2= \left(\frac{1}{2}\right)^2=

Video Solution

Answer

1222 \frac{1^2}{2^2}

Exercise #6

Insert the corresponding expression:

(1319)7= \left(\frac{13}{19}\right)^7=

Video Solution

Answer

137197 \frac{13^7}{19^7}

Exercise #7

Insert the corresponding expression:

(920)6= \left(\frac{9}{20}\right)^6=

Video Solution

Answer

96206 \frac{9^6}{20^6}

Exercise #8

Insert the corresponding expression:

(56)10= \left(\frac{5}{6}\right)^{10}=

Video Solution

Answer

510610 \frac{5^{10}}{6^{10}}

Exercise #9

Insert the corresponding expression:

(1013)8= \left(\frac{10}{13}\right)^8=

Video Solution

Answer

108138 \frac{10^8}{13^8}

Exercise #10

Insert the corresponding expression:

(58)9= \left(\frac{5}{8}\right)^9=

Video Solution

Answer

5989 \frac{5^9}{8^9}

Exercise #11

Insert the corresponding expression:

(29)7= \left(\frac{2}{9}\right)^7=

Video Solution

Answer

2797 \frac{2^7}{9^7}

Exercise #12

Insert the corresponding expression:

(37)6= \left(\frac{3}{7}\right)^6=

Video Solution

Answer

3676 \frac{3^6}{7^6}

Exercise #13

Insert the corresponding expression:

(2021)4= \left(\frac{20}{21}\right)^4=

Video Solution

Answer

204214 \frac{20^4}{21^4}

Exercise #14

Insert the corresponding expression:

(47)3= \left(\frac{4}{7}\right)^3=

Video Solution

Answer

4373 \frac{4^3}{7^3}

Exercise #15

Insert the corresponding expression:

(23)2= \left(\frac{2}{3}\right)^2=

Video Solution

Answer

2232 \frac{2^2}{3^2}

Exercise #16

Insert the corresponding expression:

(15)3= \left(\frac{1}{5}\right)^3=

Video Solution

Answer

1353 \frac{1^3}{5^3}

Exercise #17

Insert the corresponding expression:

(38×10)5= \left(\frac{3}{8\times10}\right)^5=

Video Solution

Answer

a'+b' are correct

Exercise #18

Insert the corresponding expression:

(45×7)4= \left(\frac{4}{5\times7}\right)^4=

Video Solution

Answer

44(5×7)4 \frac{4^4}{\left(5\times7\right)^4}

Exercise #19

Insert the corresponding expression:

(42×3)3= \left(\frac{4}{2\times3}\right)^3=

Video Solution

Answer

43(2×3)3 \frac{4^3}{\left(2\times3\right)^3}

Exercise #20

Insert the corresponding expression:

(13×2111×10)6= \left(\frac{13\times21}{11\times10}\right)^6=

Video Solution

Answer

136×216116×106 \frac{13^6\times21^6}{11^6\times10^6}