Rules of Roots Combined - Examples, Exercises and Solutions

Question Types:
Applying Combined Exponents Rules: Factoring Out the Greatest Common Factor (GCF)Applying Combined Exponents Rules: More than one unknownApplying Combined Exponents Rules: The power of zeroApplying Combined Exponents Rules: Worded problemsApplying Combined Exponents Rules: Using variablesApplying Combined Exponents Rules: Variable in the exponent of the powerApplying Combined Exponents Rules: Complete the equationApplying Combined Exponents Rules: Using laws of exponents with parametersApplying Combined Exponents Rules: FactorizationApplying Combined Exponents Rules: Multiplying Exponents with the same baseApplying Combined Exponents Rules: converting Negative Exponents to Positive ExponentsApplying Combined Exponents Rules: Number of termsApplying Combined Exponents Rules: Presenting powers with negative exponents as fractionsRules of Roots Combined: Identify the greater valueApplying Combined Exponents Rules: TrinomialApplying Combined Exponents Rules: Identify the greater valueApplying Combined Exponents Rules: Presenting powers in the denominator as powers with negative exponentsApplying Combined Exponents Rules: Two VariablesRules of Roots Combined: Same base and different indicatorRules of Roots Combined: Using variablesApplying Combined Exponents Rules: Variables in the exponent of the powerRules of Roots Combined: Solving the equationRules of Roots Combined: Using multiple rulesApplying Combined Exponents Rules: Using the laws of exponentsApplying Combined Exponents Rules: BinomialApplying Combined Exponents Rules: Single VariableRules of Roots Combined: Applying the formulaApplying Combined Exponents Rules: Variable in the base of the powerApplying Combined Exponents Rules: Presenting powers with negative exponents as fractionsRules of Roots Combined: Number of termsApplying Combined Exponents Rules: Calculating powers with negative exponentsApplying Combined Exponents Rules: Applying the formulaApplying Combined Exponents Rules: MonomialApplying Combined Exponents Rules: Using multiple rulesApplying Combined Exponents Rules: A power law

Understanding the combination of powers and roots is important and necessary.

First property:
a=a12\sqrt a=a^{ 1 \over 2}
Second property:
amn=amn\sqrt[n]{a^m}=a^{\frac{m}{n}}
Third property:
(a×b)=a×b\sqrt{(a\times b)}=\sqrt{a}\times \sqrt{b}

Fourth property:
ab=ab\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}

Fifth property:  
amn=an×m\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}

Suggested Topics to Practice in Advance

  1. Square root of a product
  2. Square root of a quotient
  3. Square Roots

Practice Rules of Roots Combined

Examples with solutions for Rules of Roots Combined

Exercise #1

Choose the largest value

Video Solution

Step-by-Step Solution

Let's begin by calculating the numerical value of each of the roots in the given options:

25=516=49=3 \sqrt{25}=5\\ \sqrt{16}=4\\ \sqrt{9}=3\\ We can determine that:

5>4>3>1 Therefore, the correct answer is option A

Answer

25 \sqrt{25}

Exercise #2

Solve the following exercise:

24= \sqrt{\frac{2}{4}}=

Video Solution

Step-by-Step Solution

Let's simplify the expression, first we'll reduce the fraction under the square root:

24=12= \sqrt{\frac{2}{4}}= \\ \sqrt{\frac{1}{2}}=

We'll use two exponent laws:

A. Definition of root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

B. The power law for powers applied to terms in parentheses:

(ab)n=anbn \big(\frac{a}{b}\big)^n=\frac{a^n}{b^n}

Let's return to the expression we received, first we'll use the law mentioned in A and convert the square root to a power:

12=(12)12= \sqrt{\frac{1}{2}}=\\ \big(\frac{1}{2}\big)^{\frac{1}{2}}=

We'll continue and apply the power law mentioned in B, meaning- we'll apply the power separately to the numerator and denominator, in the next step we'll remember that raising the number 1 to any power will always give the result 1, and in the fraction's denominator we'll return to the root notation, again, using the power law mentioned in A (in the opposite direction):

(12)12=112212=12 \big(\frac{1}{2}\big)^{\frac{1}{2}}= \\ \frac{1^{\frac{1}{2}}}{2^{\frac{1}{2}}}=\\ \boxed{\frac{1}{\sqrt{2}}}\\ Let's summarize the simplification of the given expression:

24=12=112212=12 \sqrt{\frac{2}{4}}= \\ \sqrt{\frac{1}{2}}= \\ \frac{1^{\frac{1}{2}}}{2^{\frac{1}{2}}}=\\ \boxed{\frac{1}{\sqrt{2}}}\\ Therefore, the correct answer is answer D.

Answer

12 \frac{1}{\sqrt{2}}

Exercise #3

Solve the following exercise:

301= \sqrt{30}\cdot\sqrt{1}=

Video Solution

Step-by-Step Solution

Let's start with a reminder of the definition of a root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

We will then use the fact that raising the number 1 to any power always yields the result 1, particularly raising it to the power of half of the square root (which we obtain by using the definition of a root as a power mentioned earlier).

In other words:

301=3012=30112=301=30 \sqrt{30}\cdot\sqrt{1}= \\ \downarrow\\ \sqrt{30}\cdot\sqrt[2]{1}=\\ \sqrt{30}\cdot 1^{\frac{1}{2}}=\\ \sqrt{30} \cdot1=\\ \boxed{\sqrt{30}}

Therefore, the correct answer is answer C.

Answer

30 \sqrt{30}

Exercise #4

Solve the following exercise:

161= \sqrt{16}\cdot\sqrt{1}=

Video Solution

Step-by-Step Solution

Let's start by recalling how to define a root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

Next, we will remember that raising 1 to any power will always yield the result 1, even the half power of the square root.

In other words:

161=1612=16112=161=16=4 \sqrt{16}\cdot\sqrt{1}= \\ \downarrow\\ \sqrt{16}\cdot\sqrt[2]{1}=\\ \sqrt{16}\cdot 1^{\frac{1}{2}}=\\ \sqrt{16} \cdot1=\\ \sqrt{16} =\\ \boxed{4} Therefore, the correct answer is answer D.

Answer

4 4

Exercise #5

Solve the following exercise:

12= \sqrt{1}\cdot\sqrt{2}=

Video Solution

Step-by-Step Solution

Let's start by recalling how to define a square root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

Next, we remember that raising 1 to any power always gives us 1, even the half power we got from converting the square root.

In other words:

12=122=1122=12=2 \sqrt{1} \cdot \sqrt{2}= \\ \downarrow\\ \sqrt[2]{1}\cdot \sqrt{2}=\\ 1^{\frac{1}{2}} \cdot\sqrt{2} =\\ 1\cdot\sqrt{2}=\\ \boxed{\sqrt{2}} Therefore, the correct answer is answer a.

Answer

2 \sqrt{2}

Exercise #6

Solve the following exercise:

25x4= \sqrt{25x^4}=

Video Solution

Step-by-Step Solution

To simplify the given expression, we will use the following three laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. Law of exponents for an exponent applied to terms in parentheses:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

c. Law of exponents for an exponent raised to an exponent:

(am)n=amn (a^m)^n=a^{m\cdot n}

We'll start by converting the fourth root to an exponent using the law of exponents mentioned in a.:

25x4=(25x4)12= \sqrt{25x^4}= \\ \downarrow\\ (25x^4)^{\frac{1}{2}}=

We'll continue, using the law of exponents mentioned in b. and apply the exponent to each factor in the parentheses:

(25x4)12=2512(x4)12 (25x^4)^{\frac{1}{2}}= \\ 25^{\frac{1}{2}}\cdot(x^4)^{{\frac{1}{2}}}

We'll continue, using the law of exponents mentioned in c. and perform the exponent applied to the term with an exponent in parentheses (the second factor in the multiplication):

2512(x4)12=2512x412=2512x2=25x2=5x2 25^{\frac{1}{2}}\cdot(x^4)^{{\frac{1}{2}}} = \\ 25^{\frac{1}{2}}\cdot x^{4\cdot\frac{1}{2}}=\\ 25^{\frac{1}{2}}\cdot x^{2}=\\ \sqrt{25}\cdot x^2=\\ \boxed{5x^2}

In the final steps, we first converted the power of one-half applied to the first factor in the multiplication back to the fourth root form, again, according to the definition of root as an exponent mentioned in a. (in the reverse direction) and then calculated the known fourth root of 25.

Therefore, the correct answer is answer a.

Answer

5x2 5x^2

Exercise #7

Solve the following problem:

(34)×(32)= \left(3^4\right)\times\left(3^2\right)=

Video Solution

Step-by-Step Solution

In order to solve this problem, we'll follow these steps:

  • Step 1: Identify the base and exponents

  • Step 2: Use the formula for multiplying powers with the same base

  • Step 3: Simplify the expression by applying the relevant exponent rule

Now, let's work through each step:

Step 1: The given expression is (34)×(32) (3^4) \times (3^2) . Here, the base is 3, and the exponents are 4 and 2.

Step 2: Apply the exponent rule, which states that when multiplying powers with the same base, we add the exponents:
am×an=am+n a^m \times a^n = a^{m+n}

Step 3: Using the rule identified in Step 2, we add the exponents 4 and 2:
34×32=34+2=36 3^4 \times 3^2 = 3^{4+2} = 3^6

Therefore, the simplified form of the expression is 36 3^6 .

Answer

36 3^6

Exercise #8

3532= \frac{3^5}{3^2}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 3532=352 \frac{3^5}{3^2} = 3^{5-2}

Simplifying, we get 33 3^3

Answer

33 3^3

Exercise #9

5654= \frac{5^6}{5^4}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Answer

52 5^2

Exercise #10

Insert the corresponding expression:

6764= \frac{6^7}{6^4}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Identify the given information and relevant exponent rules.

  • Apply the quotient property of exponents.

  • Simplify the expression.

Now, let's work through each step:
Step 1: The problem gives us the expression 6764 \frac{6^7}{6^4} . The base is 6, and the exponents are 7 and 4, respectively.
Step 2: According to the rule of exponents, when dividing powers with the same base, we subtract the exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} In this case, a=6 a = 6 , m=7 m = 7 , and n=4 n = 4 .
Step 3: Applying this rule gives us: 6764=674=63 \frac{6^7}{6^4} = 6^{7 - 4} = 6^3

Therefore, the solution to the problem is 63 6^3 .

Answer

63 6^3

Exercise #11

Insert the corresponding expression:

(92)4= \left(9^2\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the provided expression: (92)4(9^2)^4.

  • Step 2: Apply the power of a power rule for exponents.

  • Step 3: Simplify by multiplying the exponents.

Now, let's work through each step:

Step 1: We have the expression (92)4(9^2)^4.

Step 2: Using the power of a power rule ((am)n=amn(a^m)^n = a^{m \cdot n}), apply it to the expression:

(92)4=92×4 (9^2)^4 = 9^{2 \times 4}

Step 3: Simplify by calculating the product of the exponents:

2×4=8 2 \times 4 = 8

Therefore, (92)4=98(9^2)^4 = 9^8.

The correct expression corresponding to the given problem is 98\boxed{9^8}.

Answer

98 9^8

Exercise #12

Simplify the following equation:

210×36×25×32= 2^{10}\times3^6\times2^5\times3^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression 210×36×25×322^{10} \times 3^6 \times 2^5 \times 3^2 using the rules of exponents. Here are the steps:

  • Step 1: Apply the product of powers property to the base 2 terms. The expression 210×252^{10} \times 2^5 simplifies to:

    210+5=2152^{10+5} = 2^{15}

  • Step 2: Apply the product of powers property to the base 3 terms. The expression 36×323^6 \times 3^2 simplifies to:

    36+2=383^{6+2} = 3^8

  • Step 3: Combine the simplified terms to form the complete simplified expression:

    215×382^{15} \times 3^8

Therefore, the simplified form of the equation is 215×382^{15} \times 3^8.

Answer

215×38 2^{15}\times3^8

Exercise #13

Simplify the following equation:

47×53×42×54= 4^7\times5^3\times4^2\times5^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify and group the terms with the same base.

  • Step 2: Apply the laws of exponents to simplify by adding the exponents of each base.

  • Step 3: Write the simplified form.

Let's work through each step:

Step 1: We are given that 47×53×42×54 4^7 \times 5^3 \times 4^2 \times 5^4 .

Step 2: First, group the terms with the same base:

47×42 4^7 \times 4^2 and 53×54 5^3 \times 5^4 .

Step 3: Use the law of exponents, which states am×an=am+n a^m \times a^n = a^{m+n} .

For the base 4: 47×42=47+2=49 4^7 \times 4^2 = 4^{7+2} = 4^9 .

For the base 5: 53×54=53+4=57 5^3 \times 5^4 = 5^{3+4} = 5^7 .

Therefore, the simplified form of the expression is 49×57 4^9 \times 5^7 .

Answer

49×57 4^9\times5^7

Exercise #14

Simplify the following equation:

75×23×72×24= 7^5\times2^3\times7^2\times2^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the laws of exponents to simplify the expression 75×23×72×24 7^5 \times 2^3 \times 7^2 \times 2^4 .

Let's follow these steps:

  • Step 1: Identify like bases.
    We have two like bases in the expression: 7 and 2.

  • Step 2: Apply the product of powers rule for each base separately.
    For the base 7: 75×72=75+2=77 7^5 \times 7^2 = 7^{5+2} = 7^7 .
    For the base 2: 23×24=23+4=27 2^3 \times 2^4 = 2^{3+4} = 2^7 .

  • Step 3: Combine the results.
    The expression simplifies to 77×27 7^7 \times 2^7 .

The simplified form of the original expression is therefore 77×27 7^7 \times 2^7 .

Answer

77×27 7^7\times2^7

Exercise #15

Simplify the following equation:

53×24×52×23= 5^3\times2^4\times5^2\times2^3=

Video Solution

Step-by-Step Solution

Let's simplify the expression 53×24×52×23 5^3 \times 2^4 \times 5^2 \times 2^3 using the rules for exponents. We'll apply the product of powers rule, which states that when multiplying like bases, you can add the exponents.

  • Step 1: Focus on terms with the same base.
    Combine 53 5^3 and 52 5^2 . Since both terms have the base 55, we apply the rule am×an=am+na^m \times a^n = a^{m+n}: 53×52=53+2=55 5^3 \times 5^2 = 5^{3+2} = 5^5

  • Step 2: Combine 24 2^4 and 23 2^3 . Similarly, for the base 22: 24×23=24+3=27 2^4 \times 2^3 = 2^{4+3} = 2^7

After simplification, the expression becomes:
55×27 5^5 \times 2^7

Answer

55×27 5^5\times2^7

Topics learned in later sections

  1. Square Root Rules