Insert the corresponding expression:
Insert the corresponding expression:
\( \frac{1}{5^2}= \)
Insert the corresponding expression:
\( \frac{1}{4^2}= \)
Insert the corresponding expression:
\( \frac{1}{3^2}= \)
Insert the corresponding expression:
\( \frac{1}{6^7}= \)
Insert the corresponding expression:
\( \frac{1}{20^2}= \)
Insert the corresponding expression:
To solve the given problem, we need to express using negative exponents. We'll apply the formula for negative exponents, which is :
Thus, the equivalent expression for using a negative exponent is .
Insert the corresponding expression:
To solve the problem of expressing using powers with negative exponents:
Thus, the expression can be rewritten as .
Insert the corresponding expression:
To solve this problem, we'll use the rule of negative exponents:
Now, let's work through these steps:
Step 1: We have where 3 is the base and 2 is the exponent.
Step 2: Using the formula, convert the denominator to .
Step 3: Thus, .
Therefore, the solution to the problem is .
Insert the corresponding expression:
To solve this problem, we will rewrite the expression using the rules of exponents:
Step 1: Identify the given fraction.
We start with , where the base in the denominator is 6, and the exponent is 7.
Step 2: Apply the formula for negative exponents.
The formula allows us to rewrite a reciprocal power as a negative exponent. This means the expression can be rewritten as .
Step 3: Conclude with the answer.
By transforming to its equivalent form using negative exponents, the expression becomes .
Therefore, the correct expression is , which corresponds to choice 2 in the given options.
Insert the corresponding expression:
To solve this problem, we will use the properties of exponents. Specifically, we will convert the expression into a form that uses a negative exponent. The general relationship is that .
Applying this rule to the given expression:
Therefore, the expression can be expressed as , which aligns with choice 1.