Insert the corresponding expression:
Insert the corresponding expression:
\( \)\( \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}= \)
Insert the corresponding expression:
\( \left(\frac{1}{2\times3\times4}\right)^{-2}= \)
\( (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?} \)
Insert the corresponding expression:
\( \left(\frac{3\times5\times7}{4\times8\times10}\right)^5= \)
Insert the corresponding expression:
\( \left(\frac{11\times5\times4}{9\times13\times17}\right)^8= \)
Insert the corresponding expression:
The given expression is:
To solve this expression, we need to apply the rules of exponents, specifically the rule for powers of a fraction. For any fraction, the expression is equivalent to.
Therefore, negative exponents indicate that the fraction should be flipped and raised to the positive of that exponent.
Substitute the terms into this formula:
1. Flip the fraction:
2. Raise both numerator and denominator to the power of 4:
Thus, we have:
Now evaluating each term individually:
- In the numerator:
-
- In the denominator:
-
Applying the negative exponent rule, each individual factor in both numerator and denominator should be inverted, altering the exponents to negative:
1. Numerator becomes:
2. Denominator becomes:
Rewriting the expression, we achieve:
This matches precisely the provided solution.
The solution to the question is:
Insert the corresponding expression:
We are given the expression: . We need to simplify it using the rules of exponents.
Step 1: Identify the base of the exponent.
The base is .
Step 2: Apply the rule for negative exponents.
For a fraction with a negative exponent, . Therefore, .
Step 3: Expand the expression.
.
Thus, the simplified expression is:
Insert the corresponding expression:
a'+b' are correct
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{7\times13}{6\times10\times12}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{4\times8}{5\times17\times3}\right)^{-4}= \)
Insert the corresponding expression:
\( \)\( \left(\frac{5\times3}{8\times4\times2}\right)^{-5}= \)
Insert the corresponding expression:
\( \left(\frac{3\times5\times7}{2\times4\times6}\right)^{-2}= \)
Insert the corresponding expression:
\( \left(\frac{1}{2\times3\times4}\right)^{-2}= \)
Insert the corresponding expression:
A+B are correct
Insert the corresponding expression:
Insert the corresponding expression:
a' + b' are correct
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{1}{5\times6\times7}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{1}{4\times6\times9}\right)^{-4}= \)
Insert the corresponding expression:
\( \left(\frac{3}{5\times8\times7}\right)^{-2}= \)
Insert the corresponding expression:
\( \left(\frac{5}{6\times9\times11}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{5\times11}{4\times7\times9}\right)^{-2}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
\( \left(\frac{5\times8\times6}{21\times23\times19}\right)^{-2}= \)
Insert the corresponding expression:
\( \left(\frac{4\times7\times8}{5\times9\times11}\right)^{-3}= \)
Insert the corresponding expression:
\( \left(\frac{10\times3}{7\times9}\right)^{-4}= \)
Insert the corresponding expression:
\( \)\( \left(\frac{6\times8}{2\times7}\right)^{-5}= \)
Insert the corresponding expression:
\( \left(\frac{3\times7}{4\times6}\right)^{-6}= \)
Insert the corresponding expression:
Insert the corresponding expression:
A'+C' are correct
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression: