Examples with solutions for Powers of a Fraction: Number of terms

Exercise #1

Insert the corresponding expression:

(7×11×193×12×15)4= \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}=

Video Solution

Step-by-Step Solution

The given expression is:
(7×11×193×12×15)4 \left(\frac{7\times11\times19}{3\times12\times15}\right)^{-4}

To solve this expression, we need to apply the rules of exponents, specifically the rule for powers of a fraction. For any fraction(ab)n \left(\frac{a}{b}\right)^{-n} , the expression is equivalent to(ba)n \left(\frac{b}{a}\right)^n .
Therefore, negative exponents indicate that the fraction should be flipped and raised to the positive of that exponent.

Substitute the terms into this formula:
1. Flip the fraction: (3×12×157×11×19) \left(\frac{3\times12\times15}{7\times11\times19}\right)
2. Raise both numerator and denominator to the power of 4:
Thus, we have:
(3×12×157×11×19)4 \left(\frac{3\times12\times15}{7\times11\times19}\right)^{4}

Now evaluating each term individually:
- In the numerator:
- 34×124×154 3^4\times12^4\times15^4
- In the denominator:
- 74×114×194 7^4\times11^4\times19^4

Applying the negative exponent rule, each individual factor in both numerator and denominator should be inverted, altering the exponents to negative:
1. Numerator becomes: 34×124×154 3^{-4}\times12^{-4}\times15^{-4}
2. Denominator becomes: 74×114×194 7^{-4}\times11^{-4}\times19^{-4}

Rewriting the expression, we achieve:
74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

This matches precisely the provided solution.

The solution to the question is:74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Answer

74×114×19434×124×154 \frac{7^{-4}\times11^{-4}\times19^{-4}}{3^{-4}\times12^{-4}\times15^{-4}}

Exercise #2

Insert the corresponding expression:

(12×3×4)2= \left(\frac{1}{2\times3\times4}\right)^{-2}=

Video Solution

Step-by-Step Solution

We are given the expression: (12×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} . We need to simplify it using the rules of exponents.

  • Step 1: Identify the base of the exponent.
    The base is 12×3×4 \frac{1}{2\times3\times4} .

  • Step 2: Apply the rule for negative exponents.
    For a fraction 1a \frac{1}{a} with a negative exponent, (1a)n=an \left( \frac{1}{a} \right)^{-n} = a^n . Therefore, (12×3×4)2=(2×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} = (2\times3\times4)^2 .

  • Step 3: Expand the expression.
    (2×3×4)2=22×32×42(2\times3\times4)^2 = 2^2 \times 3^2 \times 4^2 .


Thus, the simplified expression is: 22×32×42 2^2\times3^2\times4^2

Answer

22×32×42 2^2\times3^2\times4^2

Exercise #3

(132)0(213)2(132)5=? (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?}

Video Solution

Answer

(213)3 (\frac{2}{13})^3

Exercise #4

Insert the corresponding expression:

(3×5×74×8×10)5= \left(\frac{3\times5\times7}{4\times8\times10}\right)^5=

Video Solution

Answer

a'+b' are correct

Exercise #5

Insert the corresponding expression:

(11×5×49×13×17)8= \left(\frac{11\times5\times4}{9\times13\times17}\right)^8=

Video Solution

Answer

118×58×4898×138×178 \frac{11^8\times5^8\times4^8}{9^8\times13^8\times17^8}

Exercise #6

Insert the corresponding expression:

(7×136×10×12)3= \left(\frac{7\times13}{6\times10\times12}\right)^{-3}=

Video Solution

Answer

A+B are correct

Exercise #7

Insert the corresponding expression:

(4×85×17×3)4= \left(\frac{4\times8}{5\times17\times3}\right)^{-4}=

Video Solution

Answer

(4×8)4(5×17×3)4 \frac{\left(4\times8\right)^{-4}}{\left(5\times17\times3\right)^{-4}}

Exercise #8

Insert the corresponding expression:

(5×38×4×2)5= \left(\frac{5\times3}{8\times4\times2}\right)^{-5}=

Video Solution

Answer

a' + b' are correct

Exercise #9

Insert the corresponding expression:

(3×5×72×4×6)2= \left(\frac{3\times5\times7}{2\times4\times6}\right)^{-2}=

Video Solution

Answer

32×52×7222×42×62 \frac{3^{-2}\times5^{-2}\times7^{-2}}{2^{-2}\times4^{-2}\times6^{-2}}

Exercise #10

Insert the corresponding expression:

(12×3×4)2= \left(\frac{1}{2\times3\times4}\right)^{-2}=

Video Solution

Answer

1222×32×42 \frac{1^{-2}}{2^{-2}\times3^{-2}\times4^{-2}}

Exercise #11

Insert the corresponding expression:

(15×6×7)3= \left(\frac{1}{5\times6\times7}\right)^{-3}=

Video Solution

Answer

1353×63×73 \frac{1^{-3}}{5^{-3}\times6^{-3}\times7^{-3}}

Exercise #12

Insert the corresponding expression:

(14×6×9)4= \left(\frac{1}{4\times6\times9}\right)^{-4}=

Video Solution

Answer

1444×64×94 \frac{1^{-4}}{4^{-4}\times6^{-4}\times9^{-4}}

Exercise #13

Insert the corresponding expression:

(35×8×7)2= \left(\frac{3}{5\times8\times7}\right)^{-2}=

Video Solution

Answer

3252×82×72 \frac{3^{-2}}{5^{-2}\times8^{-2}\times7^{-2}}

Exercise #14

Insert the corresponding expression:

(56×9×11)3= \left(\frac{5}{6\times9\times11}\right)^{-3}=

Video Solution

Answer

5363×93×113 \frac{5^{-3}}{6^{-3}\times9^{-3}\times11^{-3}}

Exercise #15

Insert the corresponding expression:

(5×114×7×9)2= \left(\frac{5\times11}{4\times7\times9}\right)^{-2}=

Video Solution

Answer

52×11242×72×92 \frac{5^{-2}\times11^{-2}}{4^{-2}\times7^{-2}\times9^{-2}}

Exercise #16

Insert the corresponding expression:

(5×8×621×23×19)2= \left(\frac{5\times8\times6}{21\times23\times19}\right)^{-2}=

Video Solution

Answer

(5×8×6)2(21×23×19)2 \frac{\left(5\times8\times6\right)^{-2}}{\left(21\times23\times19\right)^{-2}}

Exercise #17

Insert the corresponding expression:

(4×7×85×9×11)3= \left(\frac{4\times7\times8}{5\times9\times11}\right)^{-3}=

Video Solution

Answer

A'+C' are correct

Exercise #18

Insert the corresponding expression:

(10×37×9)4= \left(\frac{10\times3}{7\times9}\right)^{-4}=

Video Solution

Answer

74×94104×34 \frac{7^4\times9^4}{10^4\times3^4}

Exercise #19

Insert the corresponding expression:

(6×82×7)5= \left(\frac{6\times8}{2\times7}\right)^{-5}=

Video Solution

Answer

(2×76×8)5 \left(\frac{2\times7}{6\times8}\right)^5

Exercise #20

Insert the corresponding expression:

(3×74×6)6= \left(\frac{3\times7}{4\times6}\right)^{-6}=

Video Solution

Answer

(4×6)6(3×7)6 \frac{\left(4\times6\right)^6}{\left(3\times7\right)^6}