When we are presented with exercises or expressions where multiplication of powers with the same base appears, we can add the exponents.

The result obtained from adding the exponents will be the new exponent and the original base is maintained.

The formula of the rule:
am×an=a(m+n) a^m\times a^n=a^{(m+n)}

It doesn't matter how many terms there are. As long as there are products of powers with the same base, we can add their exponents and obtain a new one that we apply to the base.

It is important to remember that this property should only be applied when there are products of powers with the same base. In other words, if we have a multiplication of powers with different bases, we cannot add the exponents.

This property also pertains to algebraic expressions.

Practice Multiplication of Powers

Examples with solutions for Multiplication of Powers

Exercise #1

42×44= 4^2\times4^4=

Video Solution

Step-by-Step Solution

To solve the exercise we use the property of multiplication of powers with the same bases:

anam=an+m a^n * a^m = a^{n+m}

With the help of this property, we can add the exponents.

42×44=44+2=46 4^2\times4^4=4^{4+2}=4^6

Answer

46 4^6

Exercise #2

2102726= 2^{10}\cdot2^7\cdot2^6=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Keep in mind that this property is also valid for several terms in the multiplication and not just for two, for example for the multiplication of three terms with the same base we obtain:

amanak=am+nak=am+n+k a^m\cdot a^n\cdot a^k=a^{m+n}\cdot a^k=a^{m+n+k} When we use the mentioned power property twice, we could also perform the same calculation for four terms of the multiplication of five, etc.,

Let's return to the problem:

Keep in mind that all the terms in the multiplication have the same base, so we will use the previous property:

2102726=210+7+6=223 2^{10}\cdot2^7\cdot2^6=2^{10+7+6}=2^{23} Therefore, the correct answer is option c.

Answer

223 2^{23}

Exercise #3

79×7= 7^9\times7=

Video Solution

Step-by-Step Solution

According to the property of powers, when there are two powers with the same base multiplied together, the exponents should be added.

According to the formula:an×am=an+m a^n\times a^m=a^{n+m}

It is important to remember that a number without a power is equivalent to a number raised to 1, not to 0.

Therefore, if we add the exponents:

79+1=710 7^{9+1}=7^{10}

Answer

710 7^{10}

Exercise #4

828385= 8^2\cdot8^3\cdot8^5=

Video Solution

Step-by-Step Solution

All bases are equal and therefore the exponents can be added together.

828385=810 8^2\cdot8^3\cdot8^5=8^{10}

Answer

810 8^{10}

Exercise #5

Choose the expression that is equal to the following:

a4a5 a^4\cdot a^5

Video Solution

Step-by-Step Solution

We will use the law of exponents:

aman=am+n a^m\cdot a^n=a^{^{m+n}}

which means that when multiplying identical numbers raised to any power (meaning - identical bases raised to not necessarily identical powers), we can keep the same base and add the exponents of the numbers,
let's apply this law to the problem:

a4a5=a4+5=a9 a^4\cdot a^5=a^{4+5}=a^9

Let's note something important, that this solution can also be explained verbally, since raising to a power means multiplying the number (base) by itself as many times as the exponent indicates, and therefore multiplying a a by itself 4 times and multiplying the result by the result of multiplying a a by itself 5 times is like multiplying a a by itself 9 times, meaning multiplication between identical numbers (identical bases) raised to powers, not necessarily identical, can be calculated by keeping the same base (same number) and adding the exponents.

Answer

a9 a^9

Exercise #6

3x2x32x= 3^x\cdot2^x\cdot3^{2x}=

Video Solution

Step-by-Step Solution

In this case we have 2 different bases, so we will add what can be added, that is, the exponents of 3 3

3x2x32x=2x33x 3^x\cdot2^x\cdot3^{2x}=2^x\cdot3^{3x}

Answer

33x2x 3^{3x}\cdot2^x

Exercise #7

54×25= 5^4\times25=

Video Solution

Step-by-Step Solution

To solve this exercise, first we note that 25 is the result of a power and we reduce it to a common base of 5.

25=5 \sqrt{25}=5 25=52 25=5^2 Now, we go back to the initial exercise and solve by adding the powers according to the formula:

an×am=an+m a^n\times a^m=a^{n+m}

54×25=54×52=54+2=56 5^4\times25=5^4\times5^2=5^{4+2}=5^6

Answer

56 5^6

Exercise #8

7576=? 7^5\cdot7^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the rule for multiplying exponents. (the multiplication between terms with identical bases):

aman=am+n a^m\cdot a^n=a^{m+n} We then apply it to the problem:

7576=75+(6)=756=71 7^5\cdot7^{-6}=7^{5+(-6)}=7^{5-6}=7^{-1} When in a first stage we begin by applying the aforementioned rule and then continue on to simplify the expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression obtained in the previous step:

71=171=17 7^{-1}=\frac{1}{7^1}=\frac{1}{7} We then summarise the solution to the problem: 7576=71=17 7^5\cdot7^{-6}=7^{-1}=\frac{1}{7} Therefore, the correct answer is option B.

Answer

17 \frac{1}{7}

Exercise #9

a3×a4= a^3\times a^4=

Video Solution

Step-by-Step Solution

Here, we will need to calculate a multiplication between terms with identical bases, therefore we will use the appropriate power property:

bmbn=bm+n b^m\cdot b^n=b^{m+n} Note that this property can only be used to calculate the multiplication between terms with identical bases,

We apply it to the problem:

a3a4=a3+4=a7 a^3\cdot a^4=a^{3+4}=a^7 Therefore, the correct answer is option b.

Answer

a7 a^7

Exercise #10

x2×x5= x^2\times x^5=

Video Solution

Step-by-Step Solution

Here we will have to to multiply terms with identical bases, therefore we use the appropriate power property:

bmbn=bm+n b^m\cdot b^n=b^{m+n} Note that this property can only be used to calculate the multiplication between terms with identical bases,

From now on we no longer write the multiplication sign, but use the accepted form of writing in which placing terms next to each other means multiplication.

We apply it in the problem:

x2x5=x2+5=x7 x^2x^5=x^{2+5}=x^7 Therefore, the correct answer is D.

Answer

x7 x^7

Exercise #11

y2×y7= y^{-2}\times y^7=

Video Solution

Step-by-Step Solution

Note that we need to calculate multiplication between terms with identical bases, so we'll use the appropriate exponent law:

bmbn=bm+n b^m\cdot b^n=b^{m+n} Note that we can only use this law to calculate multiplication performed between terms with identical bases,

Here in the problem there is also a term with a negative exponent, but this does not pose an issue regarding the use of the aforementioned exponent law. In fact, this exponent law is valid in all cases for numerical terms with different exponents, including negative exponents, rational number exponents, and even irrational number exponents, etc.,

Let's apply it to the problem:

y2y7=y2+7=y5 y^{-2}\cdot y^7=y^{-2+7}=y^5 Therefore the correct answer is A.

Answer

y5 y^5

Exercise #12

Solve for a:

a3ba2b×ab= \frac{a^{3b}}{a^{2b}}\times a^b=

Video Solution

Step-by-Step Solution

Let's first deal with the first term in the multiplication, noting that the terms in the numerator and denominator have identical bases, so we'll use the power rule for division between terms with the same base:

aman=amn \frac{a^m}{a^n}=a^{m-n} We'll apply for the first term in the expression:

a3ba2bab=a3b2bab=abab \frac{a^{3b}}{a^{2b}}\cdot a^b=a^{3b-2b}\cdot a^b=a^b\cdot a^b where we also simplified the expression we got as a result of subtracting the exponents of the first term,

Next, we'll notice that the two terms in the multiplication have identical bases, so we'll use the power rule for multiplication between terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We'll apply to the problem:

abab=ab+b=a2b a^b\cdot a^b=a^{b+b}=a^{2b} Therefore, the correct answer is A.

Answer

a2b a^{2b}

Exercise #13

124126=? 12^4\cdot12^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of exponents; for the multiplication of terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We apply it to the given problem:

124126=124+(6)=1246=122 12^4\cdot12^{-6}=12^{4+(-6)}=12^{4-6}=12^{-2} When in a first stage we apply the aforementioned rule and then simplify the subsequent expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression that we obtained in the previous step:

122=1122=1144 12^{-2}=\frac{1}{12^2}=\frac{1}{144} Lastly we summarise the solution to the problem: 124126=122=1144 12^4\cdot12^{-6}=12^{-2} =\frac{1}{144} Therefore, the correct answer is option A.

Answer

1144 \frac{1}{144}

Exercise #14

22x+12523x= 2^{2x+1}\cdot2^5\cdot2^{3x}=

Video Solution

Step-by-Step Solution

Since the bases are the same, the exponents can be added:

2x+1+5+3x=5x+6 2x+1+5+3x=5x+6

Answer

25x+6 2^{5x+6}

Exercise #15

3319351932193=? 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=\text{?}

Video Solution

Step-by-Step Solution

Let's start by simplifying the second term in the complete multiplication, meaning - the fraction. We'll simplify it in two stages:

In the first stage we'll use the power law for multiplication between terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

and simplify the fraction's numerator:

19351932193=1935+(32)193=193532193=193193 \frac{19^{35}\cdot19^{-32}}{19^3}=\frac{19^{35+(-32)}}{19^3}=\frac{19^{35-32}}{19^3}=\frac{19^3}{19^3}

Next, we can either remember that dividing any number by itself gives 1, or use the power law for division between terms with identical bases:

aman=amn \frac{a^m}{a^n}=a^{m-n} to get that:193193=1933=190=1 \frac{19^3}{19^3}=19^{3-3}=19^0=1

where in the last step we used the fact that raising any number to the power of 0 gives 1, meaning mathematically that:

X0=1 X^0=1

Let's summarize this part, we got that:

19351932193=1 \frac{19^{35}\cdot19^{-32}}{19^3}=1

Let's now return to the complete expression in the problem and substitute this result in place of the fraction:

3319351932193=331=33 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=3^{-3}\cdot1=3^{-3}

In the next stage we'll recall the power law for negative exponents:

an=1an a^{-n}=\frac{1}{a^n}

and apply this law to the result we got:

33=133=127 3^{-3}=\frac{1}{3^3}=\frac{1}{27}

Summarizing all the steps above, we got that:

3319351932193=33=127 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=3^{-3}=\frac{1}{27}

Therefore the correct answer is answer A.

Answer

127 \frac{1}{27}