Applying Combined Exponents Rules - Examples, Exercises and Solutions

Question Types:
Applying Combined Exponents Rules: Factoring Out the Greatest Common Factor (GCF)Applying Combined Exponents Rules: More than one unknownApplying Combined Exponents Rules: Worded problemsApplying Combined Exponents Rules: Using variablesApplying Combined Exponents Rules: Variable in the exponent of the powerApplying Combined Exponents Rules: Complete the equationApplying Combined Exponents Rules: Using laws of exponents with parametersApplying Combined Exponents Rules: FactorizationApplying Combined Exponents Rules: Multiplying Exponents with the same baseApplying Combined Exponents Rules: TrinomialApplying Combined Exponents Rules: converting Negative Exponents to Positive ExponentsApplying Combined Exponents Rules: Number of termsApplying Combined Exponents Rules: Presenting powers with negative exponents as fractionsApplying Combined Exponents Rules: Two VariablesApplying Combined Exponents Rules: Identify the greater valueApplying Combined Exponents Rules: Presenting powers in the denominator as powers with negative exponentsApplying Combined Exponents Rules: BinomialApplying Combined Exponents Rules: Variables in the exponent of the powerApplying Combined Exponents Rules: Single VariableApplying Combined Exponents Rules: Using the laws of exponentsApplying Combined Exponents Rules: Variable in the base of the powerApplying Combined Exponents Rules: Presenting powers with negative exponents as fractionsApplying Combined Exponents Rules: Applying the formulaApplying Combined Exponents Rules: Calculating powers with negative exponentsApplying Combined Exponents Rules: MonomialApplying Combined Exponents Rules: A power lawApplying Combined Exponents Rules: Using multiple rules

Taking advantage of all the properties of powers or laws of exponents

From time to time, we will come across exercises in which we must use all the properties of powers together.
As soon as you have the exercise, try to first get rid of the parentheses according to the properties of powers and then, apply these properties to the corresponding terms, one after the other.

All the properties of powers or laws of exponents are:
am×an=a(m+n)a^m\times a^n=a^{(m+n)}
aman=a(mn)\frac {a^m}{a^n} =a^{(m-n)}
(a×b)n=an×bn(a\times b)^n=a^n\times b^n
(ab)n=anbn(\frac {a}{b})^n=\frac {a^n}{b^n}
(an)m=a(nm)(a^n )^m=a^{(n*m)}
a0=1a^0=1
When a0a≠0
an=1ana^{-n}=\frac {1}{a^n}

Suggested Topics to Practice in Advance

  1. Multiplying Exponents with the Same Base
  2. Division of Exponents with the Same Base
  3. Exponent of a Multiplication
  4. Power of a Quotient
  5. Power of a Power

Practice Applying Combined Exponents Rules

Examples with solutions for Applying Combined Exponents Rules

Exercise #1

Solve the exercise:

(a5)7= (a^5)^7=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

and therefore we obtain:

(a5)7=a5×7=a35 (a^5)^7=a^{5\times7}=a^{35}

Answer

a35 a^{35}

Exercise #2

1120=? 112^0=\text{?}

Video Solution

Step-by-Step Solution

We use the zero exponent rule.

X0=1 X^0=1 We obtain

1120=1 112^0=1 Therefore, the correct answer is option C.

Answer

1

Exercise #3

(35)4= (3^5)^4=

Video Solution

Step-by-Step Solution

To solve the exercise we use the power property:(an)m=anm (a^n)^m=a^{n\cdot m}

We use the property with our exercise and solve:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Answer

320 3^{20}

Exercise #4

(62)13= (6^2)^{13}=

Video Solution

Step-by-Step Solution

We use the formula:

(an)m=an×m (a^n)^m=a^{n\times m}

Therefore, we obtain:

62×13=626 6^{2\times13}=6^{26}

Answer

626 6^{26}

Exercise #5

2423= \frac{2^4}{2^3}=

Video Solution

Step-by-Step Solution

Let's keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Remember that any number raised to the 1st power is equal to the number itself, meaning that:

b1=b b^1=b Therefore, in the problem we obtain:

21=2 2^1=2 Therefore, the correct answer is option a.

Answer

2 2

Exercise #6

3532= \frac{3^5}{3^2}=

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 3532=352 \frac{3^5}{3^2} = 3^{5-2}

Simplifying, we get 33 3^3

Answer

33 3^3

Exercise #7

5654= \frac{5^6}{5^4}=

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Answer

52 5^2

Exercise #8

9993= \frac{9^9}{9^3}=

Video Solution

Step-by-Step Solution

Note that in the fraction and its denominator, there are terms with the same base, so we will use the law of exponents for division between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Let's apply it to the problem:

9993=993=96 \frac{9^9}{9^3}=9^{9-3}=9^6 Therefore, the correct answer is b.

Answer

96 9^6

Exercise #9

Simplify the expression:

a3a2b4b5= a^3\cdot a^2\cdot b^4\cdot b^5=

Video Solution

Step-by-Step Solution

In the exercise of multiplying powers, we will add up all the powers of the same product, in this case the terms a, b

We use the formula:

an×am=an+m a^n\times a^m=a^{n+m}

We are going to focus on the term a:

a3×a2=a3+2=a5 a^3\times a^2=a^{3+2}=a^5

We are going to focus on the term b:

b4×b5=b4+5=b9 b^4\times b^5=b^{4+5}=b^9

Therefore, the exercise that will be obtained after simplification is:

a5×b9 a^5\times b^9

Answer

a5b9 a^5\cdot b^9

Exercise #10

Simplify the following:

a12a9×a3a4= \frac{a^{12}}{a^9}\times\frac{a^3}{a^4}=

Video Solution

Step-by-Step Solution

First, we'll enter the same fraction using the multiplication law between fractions, by multiplying numerator by numerator and denominator by denominator:

xywz=xwyz \frac{x}{y}\cdot\frac{w}{z}=\frac{x\cdot w}{y\cdot z}

Let's return to the problem and apply the above law:

a12a9a3a4=a12a3a9a4 \frac{a^{12}}{a^9}\cdot\frac{a^3}{a^4}=\frac{a^{12}\cdot a^3}{a^{^9}\cdot a^4}

From here on we will no longer indicate the multiplication sign, but use the conventional writing method where placing terms next to each other means multiplication.

Now we'll notice that both in the numerator and denominator, multiplication is performed between terms with identical bases, therefore we'll use the power law for multiplication between terms with the same base:

bmbn=bm+n b^m\cdot b^n=b^{m+n}

Note that this law can only be used to calculate multiplication between terms with identical bases.

Let's return to the problem and calculate separately the results of multiplication in the numerator and denominator:

a12a3a9a4=a12+3a9+4=a15a13 \frac{a^{12}a^3}{a^{^9}a^4}=\frac{a^{12+3}}{a^{9+4}}=\frac{a^{15}}{a^{13}}

where in the last step we calculated the sum of the exponents.

Now, we'll notice that we need to perform division (fraction=division operation between numerator and denominator) between terms with identical bases, therefore we'll use the power law for division between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n}

Note that this law can only be used to calculate division between terms with identical bases.

Let's return to the problem and apply the above law:

a15a13=a1513=a2 \frac{a^{15}}{a^{13}}=a^{15-13}=a^2

where in the last step we calculated the result of subtraction in the exponent.

We got the most simplified expression possible and therefore we're done,

therefore the correct answer is D.

Answer

a2 a^2

Exercise #11

Simplify the following:

b22b20×b30b20= \frac{b^{22}}{b^{20}}\times\frac{b^{30}}{b^{20}}=

Video Solution

Step-by-Step Solution

Let's start with multiplying the fractions, remembering that multiplication of fractions is performed by multiplying numerator by numerator and denominator by denominator:

b22b20b30b20=b22b30b20b20 \frac{b^{22}}{b^{20}}\cdot\frac{b^{30}}{b^{20}}=\frac{b^{22}\cdot b^{30}}{b^{20}\cdot b^{20}}

Next, we'll notice that both in the numerator and denominator, multiplication occurs between terms with identical bases, so we'll use the power law for multiplying terms with identical bases:

cmcn=cm+n c^m\cdot c^n=c^{m+n}

We emphasize that this law can only be used when multiplication is performed between terms with identical bases.

From here on, we will no longer indicate the multiplication sign, but use the conventional writing method where placing terms next to each other means multiplication.
Let's return to the problem and apply the above power law separately to the fraction's numerator and denominator:

b22b30b20b20=b22+30b20+20=b52b40 \frac{b^{22}b^{30}}{b^{20}b^{20}}=\frac{b^{22+30}}{b^{20+20}}=\frac{b^{52}}{b^{40}}

where in the final step we calculated the sum of the exponents in the numerator and denominator.

Now we notice that division is required between two terms with identical bases, so we'll use the power law for division between terms with identical bases:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n}

We emphasize that this law can only be used when division is performed between terms with identical bases.

Let's return to the problem and apply the above power law:

b52b40=b5240=b12 \frac{b^{52}}{b^{40}}=b^{52-40}=b^{12}

where in the final step we calculated the subtraction between the exponents.

We have obtained the most simplified expression and therefore we are done.

Therefore, the correct answer is C.

Answer

b12 b^{12}

Exercise #12

Solve the exercise:

a2:a+a3a5= a^2:a+a^3\cdot a^5=

Video Solution

Step-by-Step Solution

First we rewrite the first expression on the left of the problem as a fraction:

a2a+a3a5 \frac{a^2}{a}+a^3\cdot a^5 Then we use two properties of exponentiation, to multiply and divide terms with identical bases:

1.

bmbn=bm+n b^m\cdot b^n=b^{m+n}

2.

bmbn=bmn \frac{b^m}{b^n}=b^{m-n}

Returning to the problem and applying the two properties of exponentiation mentioned earlier:

a2a+a3a5=a21+a3+5=a1+a8=a+a8 \frac{a^2}{a}+a^3\cdot a^5=a^{2-1}+a^{3+5}=a^1+a^8=a+a^8

Later on, keep in mind that we need to factor the expression we obtained in the last step by extracting the common factor,

Therefore, we extract from outside the parentheses the greatest common divisor to the two terms which are:

a a We obtain the expression:

a+a8=a(1+a7) a+a^8=a(1+a^7) when we use the property of exponentiation mentioned earlier in A.

a8=a1+7=a1a7=aa7 a^8=a^{1+7}=a^1\cdot a^7=a\cdot a^7

Summarizing the solution to the problem and all the steps, we obtained the following:

a2a+a3a5=a(1+a7) \frac{a^2}{a}+a^3\cdot a^5=a(1+a^{7)}

Therefore, the correct answer is option b.

Answer

a(1+a7) a(1+a^7)

Exercise #13

(2×8×7)2= (2\times8\times7)^2=

Video Solution

Step-by-Step Solution

We begin by using the power rule for parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n

That is, the power applied to a product inside parentheses, is applied to each of the terms within, when the parentheses are opened.

We then apply the above rule to the problem:

(287)2=228272 (2\cdot8\cdot7)^2=2^2\cdot8^2\cdot7^2

Therefore, the correct answer is option d.

Note:

From the formula of the power property inside parentheses mentioned above, it might seem as though it refers to only two terms of the product inside of the parentheses, but in reality, it is also valid for the power over a multiplication of many terms inside parentheses, as was seen above.

A good exercise is to demonstrate that if the previous property is valid for a power over a product of two terms inside parentheses (as formulated above), then it is also valid for a power over several terms of the product inside parentheses (for example - three terms, etc.).

Answer

228272 2^2\cdot8^2\cdot7^2

Exercise #14

(3×4×5)4= (3\times4\times5)^4=

Video Solution

Step-by-Step Solution

We use the power law for multiplication within parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

We apply it to the problem:

(345)4=344454 (3\cdot4\cdot5)^4=3^4\cdot4^4\cdot5^4

Therefore, the correct answer is option b.

Note:

From the formula of the power property mentioned above, we understand that it refers not only to two terms of the multiplication within parentheses, but also for multiple terms within parentheses.

Answer

34×44×54 3^4\times4^4\times5^4

Exercise #15

(42)3+(g3)4= (4^2)^3+(g^3)^4=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(42)3+(g3)4=42×3+g3×4=46+g12 (4^2)^3+(g^3)^4=4^{2\times3}+g^{3\times4}=4^6+g^{12}

Answer

46+g12 4^6+g^{12}

Topics learned in later sections

  1. Rules of Exponentiation
  2. Combining Powers and Roots