Triangle - Examples, Exercises and Solutions

Triangle

In this article, we will briefly learn everything necessary about triangles and also practice with some exercises!
Let's get started!

Practice Triangle

Examples with solutions for Triangle

Exercise #1

Angle A equals 56°.
Angle B equals 89°.
Angle C equals 17°.

Can these angles make a triangle?

Video Solution

Step-by-Step Solution

We add the three angles to see if they are equal to 180 degrees:

56+89+17=162 56+89+17=162

The sum of the given angles is not equal to 180, so they cannot form a triangle.

Answer

No.

Exercise #2

Angle A equals 90°.
Angle B equals 115°.
Angle C equals 35°.

Can these angles form a triangle?

Video Solution

Step-by-Step Solution

We add the three angles to see if they are equal to 180 degrees:

90+115+35=240 90+115+35=240
The sum of the given angles is not equal to 180, so they cannot form a triangle.

Answer

No.

Exercise #3

Angle A is equal to 30°.
Angle B is equal to 60°.
Angle C is equal to 90°.

Can these angles form a triangle?

Video Solution

Step-by-Step Solution

We add the three angles to see if they equal 180 degrees:

30+60+90=180 30+60+90=180
The sum of the angles equals 180, so they can form a triangle.

Answer

Yes

Exercise #4

Calculate the area of the following triangle:

444555AAABBBCCCEEE

Video Solution

Step-by-Step Solution

The formula for calculating the area of a triangle is:

(the side * the height from the side down to the base) /2

That is:

BC×AE2 \frac{BC\times AE}{2}

We insert the existing data as shown below:

4×52=202=10 \frac{4\times5}{2}=\frac{20}{2}=10

Answer

10

Exercise #5

Calculate the area of the following triangle:

666777AAABBBCCCEEE

Video Solution

Step-by-Step Solution

The formula for the area of a triangle is

A=hbase2 A = \frac{h\cdot base}{2}

Let's insert the available data into the formula:

(7*6)/2 =

42/2 =

21

Answer

21

Exercise #6

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #7

Calculate the area of the triangle ABC using the data in the figure.

121212888999AAABBBCCCDDD

Video Solution

Step-by-Step Solution

First, let's remember the formula for the area of a triangle:

(the side * the height that descends to the side) /2

 

In the question, we have three pieces of data, but one of them is redundant!

We only have one height, the line that forms a 90-degree angle - AD,

The side to which the height descends is CB,

Therefore, we can use them in our calculation:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Answer

36 cm²

Exercise #8

Calculate the area of the triangle below, if possible.

8.58.58.5777

Video Solution

Step-by-Step Solution

The formula to calculate the area of a triangle is:

(side * height corresponding to the side) / 2

Note that in the triangle provided to us, we have the length of the side but not the height.

That is, we do not have enough data to perform the calculation.

Answer

Cannot be calculated

Exercise #9

The triangle ABC is given below.
AC = 10 cm

AD = 3 cm

BC = 11.6 cm
What is the area of the triangle?

11.611.611.6101010333AAABBBCCCDDD

Video Solution

Step-by-Step Solution

The triangle we are looking at is the large triangle - ABC

The triangle is formed by three sides AB, BC, and CA.

Now let's remember what we need for the calculation of a triangular area:

(side x the height that descends from the side)/2

Therefore, the first thing we must find is a suitable height and side.

We are given the side AC, but there is no descending height, so it is not useful to us.

The side AB is not given,

And so we are left with the side BC, which is given.

From the side BC descends the height AD (the two form a 90-degree angle).

It can be argued that BC is also a height, but if we delve deeper it seems that CD can be a height in the triangle ADC,

and BD is a height in the triangle ADB (both are the sides of a right triangle, therefore they are the height and the side).

As we do not know if the triangle is isosceles or not, it is also not possible to know if CD=DB, or what their ratio is, and this theory fails.

Let's remember again the formula for triangular area and replace the data we have in the formula:

(side* the height that descends from the side)/2

Now we replace the existing data in this formula:

CB×AD2 \frac{CB\times AD}{2}

11.6×32 \frac{11.6\times3}{2}

34.82=17.4 \frac{34.8}{2}=17.4

Answer

17.4

Exercise #10

What is the area of the given triangle?

555999666

Video Solution

Step-by-Step Solution

This question is a bit confusing. We need start by identifying which parts of the data are relevant to us.

Remember the formula for the area of a triangle:

A1- How to find the area of a triangleThe height is a straight line that comes out of an angle and forms a right angle with the opposite side.

In the drawing we have a height of 6.

It goes down to the opposite side whose length is 5.

And therefore, these are the data points that we will use.

We replace in the formula:

6×52=302=15 \frac{6\times5}{2}=\frac{30}{2}=15

Answer

15

Exercise #11

What is the area of the triangle in the drawing?

5557778.68.68.6

Video Solution

Step-by-Step Solution

First, we will identify the data points we need to be able to find the area of the triangle.

the formula for the area of the triangle: height*opposite side / 2

Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.

We multiply the legs and divide by 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Answer

17.5

Exercise #12

Below is an equilateral triangle:

XXX

If the perimeter of the triangle is 33 cm, then what is the value of X?

Video Solution

Step-by-Step Solution

We know that in an equilateral triangle all sides are equal.

Therefore, if we know that one side is equal to X, then all sides are equal to X.

We know that the perimeter of the triangle is 33.

The perimeter of the triangle is equal to the sum of the sides together.

We replace the data:

x+x+x=33 x+x+x=33

3x=33 3x=33

We divide the two sections by 3:

3x3=333 \frac{3x}{3}=\frac{33}{3}

x=11 x=11

Answer

11

Exercise #13

Calculate X using the data in the figure below.

S=20S=20S=20555XXXAAABBBCCC

Video Solution

Step-by-Step Solution

The formula to calculate the area of a triangle is:

(side * height descending from the side) /2

We place the data we have into the formula to find X:

20=AB×AC2 20=\frac{AB\times AC}{2}

20=x×52 20=\frac{x\times5}{2}

Multiply by 2 to get rid of the fraction:

5x=40 5x=40

Divide both sections by 5:

5x5=405 \frac{5x}{5}=\frac{40}{5}

x=8 x=8

Answer

8

Exercise #14

Given an equilateral triangle:

555

What is its perimeter?

Video Solution

Step-by-Step Solution

Since the triangle is equilateral, that is, all sides are equal to each other.

The perimeter of the triangle is equal to the sum of all sides together, the perimeter of the triangle in the drawing is equal to:

5+5+5=15 5+5+5=15

Answer

15

Exercise #15

Given the triangle:

777111111131313

What is its perimeter?

Video Solution

Step-by-Step Solution

The perimeter of a triangle is equal to the sum of all its sides together:

11+7+13=11+20=31 11+7+13=11+20=31

Answer

31