In this article, we will learn what area is, and understand how it is calculated for each shape, in the most practical and simple way there is.
Shall we start?
In this article, we will learn what area is, and understand how it is calculated for each shape, in the most practical and simple way there is.
Shall we start?
Area is the definition of the size of something. In mathematics, which is precisely what interests us now, it refers to the size of some figure.
In everyday life, you have surely heard about area in relation to the surface of an apartment, plot of land, etc.
In fact, when they ask what the surface area of your apartment is, they are asking about its size and, instead of answering with words like "big" or "small" we can calculate its area and express it with units of measure. In this way, we can compare different sizes.
Large areas such as apartments are usually measured in meters, therefore, the unit of measurement will be square meter.
On the other hand, smaller figures are generally measured in centimeters, that is, the unit of measurement for the area will be square centimeter.
Remember:
Units of measurement for the area in
Units of measurement for the area
What is the area of the given triangle?
What is the area of the triangle in the drawing?
The triangle ABC is given below.
AC = 10 cm
AD = 3 cm
BC = 11.6 cm
What is the area of the triangle?
The width of a rectangle is equal to 15 cm and its length is 3 cm.
Calculate the area of the rectangle.
Calculate the area of the trapezoid.
What is the area of the given triangle?
This question is a bit confusing. We need start by identifying which parts of the data are relevant to us.
Remember the formula for the area of a triangle:
The height is a straight line that comes out of an angle and forms a right angle with the opposite side.
In the drawing we have a height of 6.
It goes down to the opposite side whose length is 5.
And therefore, these are the data points that we will use.
We replace in the formula:
15
What is the area of the triangle in the drawing?
First, we will identify the data points we need to be able to find the area of the triangle.
the formula for the area of the triangle: height*opposite side / 2
Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.
We multiply the legs and divide by 2
17.5
The triangle ABC is given below.
AC = 10 cm
AD = 3 cm
BC = 11.6 cm
What is the area of the triangle?
The triangle we are looking at is the large triangle - ABC
The triangle is formed by three sides AB, BC, and CA.
Now let's remember what we need for the calculation of a triangular area:
(side x the height that descends from the side)/2
Therefore, the first thing we must find is a suitable height and side.
We are given the side AC, but there is no descending height, so it is not useful to us.
The side AB is not given,
And so we are left with the side BC, which is given.
From the side BC descends the height AD (the two form a 90-degree angle).
It can be argued that BC is also a height, but if we delve deeper it seems that CD can be a height in the triangle ADC,
and BD is a height in the triangle ADB (both are the sides of a right triangle, therefore they are the height and the side).
As we do not know if the triangle is isosceles or not, it is also not possible to know if CD=DB, or what their ratio is, and this theory fails.
Let's remember again the formula for triangular area and replace the data we have in the formula:
(side* the height that descends from the side)/2
Now we replace the existing data in this formula:
17.4
The width of a rectangle is equal to 15 cm and its length is 3 cm.
Calculate the area of the rectangle.
To calculate the area of the rectangle, we multiply the length by the width:
45
Calculate the area of the trapezoid.
We use the formula (base+base) multiplied by the height and divided by 2.
Note that we are only provided with one base and it is not possible to determine the size of the other base.
Therefore, the area cannot be calculated.
Cannot be calculated.
Complete the sentence:
To find the area of a right triangle, one must multiply ________________ by each other and divide by 2.
Calculate the area of the triangle below, if possible.
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
Complete the sentence:
To find the area of a right triangle, one must multiply ________________ by each other and divide by 2.
To solve this problem, begin by identifying the elements involved in calculating the area of a right triangle. In a right triangle, the two sides that form the right angle are known as the legs. These legs act as the base and height of the triangle.
The formula for the area of a triangle is given by:
In the case of a right triangle, the base and height are the two legs. Therefore, the process of finding the area involves multiplying the lengths of the two legs together and then dividing the product by 2.
Based on this analysis, the correct way to complete the sentence in the problem is:
To find the area of a right triangle, one must multiply the two legs by each other and divide by 2.
the two legs
Calculate the area of the triangle below, if possible.
The formula to calculate the area of a triangle is:
(side * height corresponding to the side) / 2
Note that in the triangle provided to us, we have the length of the side but not the height.
That is, we do not have enough data to perform the calculation.
Cannot be calculated
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Remember that the formula for the area of a rectangle is width times height
We are given that the width of the rectangle is 6
and that the length of the rectangle is 4
Therefore we calculate:
6*4=24
24 cm²
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
We begin by multiplying side AB by side BC
We then substitute the given data and we obtain the following:
Hence the area of rectangle ABCD equals 9
9 cm²
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
Let's begin by multiplying side AB by side BC
If we insert the known data into the above equation we should obtain the following:
Thus the area of rectangle ABCD equals 25.
25 cm²
Given the following rectangle:
Find the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
Given the following rectangle:
Find the area of the rectangle.
Calculate the area of the following parallelogram:
Given the following rectangle:
Find the area of the rectangle.
We will use the formula to calculate the area of a rectangle: length times width
54
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
32
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
10
Given the following rectangle:
Find the area of the rectangle.
Let's calculate the area of the rectangle by multiplying the length by the width:
77
Calculate the area of the following parallelogram:
To solve the exercise, we need to remember the formula for the area of a parallelogram:
Side * Height perpendicular to the side
In the diagram, although it's not presented in the way we're familiar with, we are given the two essential pieces of information:
Side = 6
Height = 5
Let's now substitute these values into the formula and calculate to get the answer:
6 * 5 = 30
30 cm²