In this article, we will learn what area is, and understand how it is calculated for each shape, in the most practical and simple way there is.
Shall we start?
In this article, we will learn what area is, and understand how it is calculated for each shape, in the most practical and simple way there is.
Shall we start?
Area is the definition of the size of something. In mathematics, which is precisely what interests us now, it refers to the size of some figure.
In everyday life, you have surely heard about area in relation to the surface of an apartment, plot of land, etc.
In fact, when they ask what the surface area of your apartment is, they are asking about its size and, instead of answering with words like "big" or "small" we can calculate its area and express it with units of measure. In this way, we can compare different sizes.
Large areas such as apartments are usually measured in meters, therefore, the unit of measurement will be square meter.
On the other hand, smaller figures are generally measured in centimeters, that is, the unit of measurement for the area will be square centimeter.
Remember:
Units of measurement for the area in
Units of measurement for the area
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
The triangle ABC is given below.
AC = 10 cm
AD = 3 cm
BC = 11.6 cm
What is the area of the triangle?
What is the area of the given triangle?
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Remember that the formula for the area of a rectangle is width times height
We are given that the width of the rectangle is 6
and that the length of the rectangle is 4
Therefore we calculate:
6*4=24
24 cm²
Look at the rectangle ABCD below.
Side AB is 4.5 cm long and side BC is 2 cm long.
What is the area of the rectangle?
We begin by multiplying side AB by side BC
We then substitute the given data and we obtain the following:
Hence the area of rectangle ABCD equals 9
9 cm²
Look at rectangle ABCD below.
Side AB is 10 cm long and side BC is 2.5 cm long.
What is the area of the rectangle?
Let's begin by multiplying side AB by side BC
If we insert the known data into the above equation we should obtain the following:
Thus the area of rectangle ABCD equals 25.
25 cm²
The triangle ABC is given below.
AC = 10 cm
AD = 3 cm
BC = 11.6 cm
What is the area of the triangle?
The triangle we are looking at is the large triangle - ABC
The triangle is formed by three sides AB, BC, and CA.
Now let's remember what we need for the calculation of a triangular area:
(side x the height that descends from the side)/2
Therefore, the first thing we must find is a suitable height and side.
We are given the side AC, but there is no descending height, so it is not useful to us.
The side AB is not given,
And so we are left with the side BC, which is given.
From the side BC descends the height AD (the two form a 90-degree angle).
It can be argued that BC is also a height, but if we delve deeper it seems that CD can be a height in the triangle ADC,
and BD is a height in the triangle ADB (both are the sides of a right triangle, therefore they are the height and the side).
As we do not know if the triangle is isosceles or not, it is also not possible to know if CD=DB, or what their ratio is, and this theory fails.
Let's remember again the formula for triangular area and replace the data we have in the formula:
(side* the height that descends from the side)/2
Now we replace the existing data in this formula:
17.4
What is the area of the given triangle?
This question is a bit confusing. We need start by identifying which parts of the data are relevant to us.
Remember the formula for the area of a triangle:
The height is a straight line that comes out of an angle and forms a right angle with the opposite side.
In the drawing we have a height of 6.
It goes down to the opposite side whose length is 5.
And therefore, these are the data points that we will use.
We replace in the formula:
15
What is the area of the triangle in the drawing?
Given the trapezoid:
What is the area?
Look at the circle in the figure:
The radius is equal to 7.
What is the area of the circle?
Given the rhombus in the drawing:
What is the area?
Look at the deltoid in the figure:
What is its area?
What is the area of the triangle in the drawing?
First, we will identify the data points we need to be able to find the area of the triangle.
the formula for the area of the triangle: height*opposite side / 2
Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.
We multiply the legs and divide by 2
17.5
Given the trapezoid:
What is the area?
Formula for the area of a trapezoid:
We substitute the data into the formula and solve:
52.5
Look at the circle in the figure:
The radius is equal to 7.
What is the area of the circle?
Remember that the formula for the area of a circle is
πR²
We replace the data we know:
π7²
π49
49π
Given the rhombus in the drawing:
What is the area?
Let's remember that there are two ways to calculate the area of a rhombus:
The first is the side times the height of the side.
The second is diagonal times diagonal divided by 2.
Since we are given both diagonals, we calculate it the second way:
14
Look at the deltoid in the figure:
What is its area?
Let's begin by reminding ourselves of the formula for the area of a kite
Both these values are given to us in the figure thus we can insert them directly into the formula:
(4*7)/2
28/2
14
14
Look at the deltoid in the figure:
What is its area?
ACBD is a deltoid.
AD = AB
CA = CB
Given in cm:
AB = 6
CD = 10
Calculate the area of the deltoid.
ABDC is a deltoid.
AB = BD
DC = CA
AD = 12 cm
CB = 16 cm
Calculate the area of the deltoid.
Shown below is the deltoid ABCD.
The diagonal AC is 8 cm long.
The area of the deltoid is 32 cm².
Calculate the diagonal DB.
The trapezoid ABCD is shown below.
Base AB = 6 cm
Base DC = 10 cm
Height (h) = 5 cm
Calculate the area of the trapezoid.
Look at the deltoid in the figure:
What is its area?
To solve the exercise, we first need to know the formula for calculating the area of a kite:
It's also important to know that a concave kite, like the one in the question, has one of its diagonals outside the shape, but it's still its diagonal.
Let's now substitute the data from the question into the formula:
(6*5)/2=
30/2=
15
15
ACBD is a deltoid.
AD = AB
CA = CB
Given in cm:
AB = 6
CD = 10
Calculate the area of the deltoid.
To solve the exercise, we first need to remember how to calculate the area of a rhombus:
(diagonal * diagonal) divided by 2
Let's plug in the data we have from the question
10*6=60
60/2=30
And that's the solution!
30
ABDC is a deltoid.
AB = BD
DC = CA
AD = 12 cm
CB = 16 cm
Calculate the area of the deltoid.
First, let's recall the formula for the area of a rhombus:
(Diagonal 1 * Diagonal 2) divided by 2
Now we will substitute the known data into the formula, giving us the answer:
(12*16)/2
192/2=
96
96 cm²
Shown below is the deltoid ABCD.
The diagonal AC is 8 cm long.
The area of the deltoid is 32 cm².
Calculate the diagonal DB.
First, we recall the formula for the area of a kite: multiply the lengths of the diagonals by each other and divide the product by 2.
We substitute the known data into the formula:
We reduce the 8 and the 2:
Divide by 4
8 cm
The trapezoid ABCD is shown below.
Base AB = 6 cm
Base DC = 10 cm
Height (h) = 5 cm
Calculate the area of the trapezoid.
First, we need to remind ourselves of how to work out the area of a trapezoid:
Now let's substitute the given data into the formula:
(10+6)*5 =
2
Let's start with the upper part of the equation:
16*5 = 80
80/2 = 40
40 cm²