Triangle Height Practice Problems & Solutions - Free Worksheets

Master triangle height calculations with step-by-step practice problems. Learn to find altitudes in right, isosceles, and scalene triangles using geometric principles.

📚Master Triangle Height Calculations Through Interactive Practice
  • Calculate triangle heights using the Pythagorean theorem in right triangles
  • Find altitudes that fall inside and outside triangle boundaries
  • Apply height formulas to solve area and perimeter problems
  • Work with heights in isosceles triangles and parallelograms
  • Identify perpendicular segments from vertices to opposite sides
  • Solve complex geometry problems involving triangle altitudes

Understanding Triangle Height

Complete explanation with examples

Set the Height of a Triangle

The height of a triangle is the segment that connects a vertex to the opposite side such that it creates a 90-degree angle.

In every triangle, there are three heights, as there are three vertices from which the height can be calculated relative to the side that is opposite to each of them.

The height can be found either inside or outside of the triangle. If it does not run through the interior of the triangle, it is called an external height.

Below, we provide you with some examples of triangle heights:

A1 - triangle height

Detailed explanation

Practice Triangle Height

Test your knowledge with 36 quizzes

In an isosceles triangle, the angle between ? and ? is the "base angle".

Examples with solutions for Triangle Height

Step-by-step solutions included
Exercise #1

Is DE side in one of the triangles?
AAABBBCCCDDDEEE

Step-by-Step Solution

Since line segment DE does not correspond to a full side of any of the triangles present within the given geometry, we conclude that the statement “DE is a side in one of the triangles” is Not true.

Answer:

Not true

Video Solution
Exercise #2

The triangle ABC is shown below.

To which side(s) are the median and the altitude drawn?

AAABBBCCCDDDEEEFFF

Step-by-Step Solution

To solve the problem of identifying to which side of triangle ABC ABC the median and the altitude are drawn, let's analyze the diagram given for triangle ABC ABC .

  • We acknowledge that a median is a line segment drawn from a vertex to the midpoint of the opposite side. An altitude is a line segment drawn from a vertex perpendicular to the opposite side.
  • Upon reviewing the diagram of triangle ABC ABC , line segment AD AD is a reference term. It appears to meet point C C in the middle, suggesting it's a median, but it also forms right angles suggesting it is an altitude.
  • Given the placement and orientation of AD AD , it is perpendicular to line BC BC (the opposite base for the median from A A ). Therefore, this line is both the median and the altitude to side BC BC .

Thus, the side to which both the median and the altitude are drawn is BC.

Therefore, the correct answer to the problem is the side BC BC , corresponding with choice Option 2: BC \text{Option 2: BC} .

Answer:

BC

Exercise #3

Look at triangle ABC below.

What is the median of the triangle and to which side is it drawn?

AAABBBCCCDDDEEE

Step-by-Step Solution

A median of a triangle is a line segment that connects a vertex to the midpoint of the opposite side. In triangle ABC \triangle ABC , we need to identify such a median from the diagram provided.

Step 1: Observe the diagram to identify the midpoint of each side.

Step 2: It is given that point E E is located on side AC AC . If E E is the midpoint of AC AC , then any line from a vertex to point E E would be a median.

Step 3: Check line segment BE BE . This line runs from vertex B B to point E E .

Step 4: Since E E is labeled as the midpoint of AC AC , line BE BE is the median of ABC \triangle ABC drawn to side AC AC .

Therefore, the median of the triangle is BE BE for AC AC .

Answer:

BE for AC

Exercise #4

Look at triangle ABC below.

Which is the median?

αααAAABBBCCCDDDEEE

Step-by-Step Solution

To solve this problem, we must identify which line segment in triangle ABC is the median.

First, review the definition: a median in a triangle connects a vertex to the midpoint of the opposite side. Now, in triangle ABC:

  • Point A represents the vertex.
  • Point E lies on line segment AB.
  • Line segment EC needs to be checked to see if it connects vertex E to point C.

From the diagram, it appears that E is indeed the midpoint of side AB. Thus, line segment EC connects vertex C to this midpoint.

This fits the definition of a median, verifying that EC is the median line segment in triangle ABC.

Therefore, the solution to the problem is: EC \text{EC} .

Answer:

EC

Exercise #5

Look at the triangle ABC below.

AD=12AB AD=\frac{1}{2}AB

BE=12EC BE=\frac{1}{2}EC

What is the median in the triangle?

AAABBBCCCEEEDDD

Step-by-Step Solution

A median in a triangle is a line segment connecting a vertex to the midpoint of the opposite side. Here, we need to find such a segment in triangle ABC \triangle ABC .

Let's analyze the given conditions:

  • AD=12AB AD = \frac{1}{2}AB : Point D D is the midpoint of AB AB .
  • BE=12EC BE = \frac{1}{2}EC : Point E E is the midpoint of EC EC .

Given that D D is the midpoint of AB AB , if we consider the line segment DC DC , it starts from vertex D D and ends at C C , passing through the midpoint of AB AB (which is D D ), fulfilling the condition for a median.

Therefore, the line segment DC DC is the median from vertex A A to side BC BC .

In summary, the correct answer is the segment DC DC .

Answer:

DC

Frequently Asked Questions

What is the height of a triangle and how do you find it?

+
The height of a triangle is a perpendicular segment drawn from any vertex to the opposite side, forming a 90-degree angle. To find it, you can use the Pythagorean theorem in right triangles or area formulas where height = (2 × Area) ÷ base length.

Can a triangle height be outside the triangle?

+
Yes, triangle heights can be external when the triangle is obtuse. In obtuse triangles, the altitude from the obtuse angle vertex falls outside the triangle, extending beyond the opposite side to maintain the perpendicular relationship.

How many heights does every triangle have?

+
Every triangle has exactly three heights, one from each vertex to its opposite side. These three altitudes always intersect at a single point called the orthocenter, regardless of the triangle type.

What's the difference between triangle height and side length?

+
Triangle height is always perpendicular to a side and may not be one of the triangle's three sides. Side lengths are the actual edges of the triangle, while heights are auxiliary lines used for calculations like finding area.

How do you calculate triangle area using height?

+
The triangle area formula is: Area = (1/2) × base × height. Choose any side as the base, then use the corresponding height (perpendicular distance from the opposite vertex to that base) to calculate the area.

Why do isosceles triangles have special height properties?

+
In isosceles triangles, the height from the vertex angle to the base bisects both the vertex angle and the base. This creates two congruent right triangles, making calculations easier and creating symmetrical properties.

What are common mistakes when finding triangle heights?

+
Common errors include: 1) Confusing height with side length, 2) Not ensuring the height is perpendicular, 3) Measuring to the wrong side, 4) Forgetting that heights can be external in obtuse triangles.

How does the Pythagorean theorem help find triangle heights?

+
When a triangle height creates a right triangle, you can use a² + b² = c² to find the missing height. The height becomes one leg, part of the base becomes the other leg, and the triangle's side becomes the hypotenuse.

More Triangle Height Questions

Continue Your Math Journey

Practice by Question Type