Mixed Numbers

In this article, we will teach you the basics of everything you need to know about mixed numbers.
If you wish to delve deeper into a specific topic, you can access the corresponding extensive article.

Mixed Number and Fraction Greater Than 1

A fraction that is greater than 1 is a fraction whose numerator is larger than its denominator, this type of fractions can be converted into mixed numbers.

It is important that we remember similar topics:

How do you convert a mixed number to a fraction?

Multiply the whole number by the denominator.
To the obtained product, add the numerator. The final result will be the new numerator.
Nothing is changed in the denominator.

How do you convert an integer to a fraction?

The whole number is written in the numerator and the 1 in the denominator.

You can continue reading in these articles:

Start practice

Test yourself on mixed fractions!

einstein

Solve:

\( 7\times\frac{3}{8}= \)

Practice more now

Mixed Numbers

Addition and Subtraction of Mixed Numbers

To add and subtract mixed numbers, we will act as follows:

First step

We will convert mixed numbers into fractions - fractions with numerator and denominator that do not have whole numbers.

Second step

We will find a common denominator (usually by multiplying the denominators).

Third step

We will add or subtract only the numerators. The denominator will be written only once in the final result.

Multiplication of an Integer by a Fraction and by a Mixed Number

We will solve the multiplication of an integer by a fraction and by a mixed number in the following way:

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

First step

We will convert the whole numbers and mixed numbers to fractions and rewrite the exercise.


Second step

We will multiply the numerators and the denominators separately.
The product of the numerators will be written in the new numerator.
The product of the denominators will be written in the new denominator.


Do you know what the answer is?

Multiplication and Division of Mixed Numbers

In multiplications

First step

We will convert mixed numbers to fractions and rewrite the exercise.


Second step

We will multiply the numerators and the denominators separately.
The product of the numerators will be written in the new numerator.
The product of the denominators will be written in the new denominator.
โ€ข The commutative property works - We can change the order of the fractions within the exercise without altering the result.


In divisions

First step

We will convert mixed numbers to fractions and rewrite the exercise.


Second step

We will convert the division into multiplication and swap between the numerator and the denominator in the second fraction.


Third step

We will solve by multiplying numerator by numerator and denominator by denominator.


Check your understanding

Division of an Integer by a Fraction and by a Mixed Number

First step

  • In case there is any mixed number - we will convert it into a fraction
    โ€ขย ย  ย  In case there is any whole number - we will convert it into a fraction

Second step

We will convert the division into multiplication and swap between the numerator and the denominator in the second fraction.


Third step

We will solve by multiplying numerator by numerator and denominator by denominator.


Examples and exercises with solutions of mixed fractions

Exercise #1

Solve:

7ร—38= 7\times\frac{3}{8}=

Video Solution

Step-by-Step Solution

To solve this problem, we will start by multiplying the whole number 7 by the fraction 38 \frac{3}{8} using the rule for multiplying a whole number by a fraction.

Calculate the product:

  • 7ร—38=7ร—38 7 \times \frac{3}{8} = \frac{7 \times 3}{8}
  • =218 = \frac{21}{8}

The fraction 218 \frac{21}{8} is an improper fraction, meaning the numerator is greater than the denominator. To convert it to a mixed number, we divide 21 by 8:

  • 21 divided by 8 equals 2 with a remainder of 5.
  • This gives us the mixed number: 258 2\frac{5}{8}

The remainder becomes the numerator of the fraction part, and the denominator remains the same as in the original fraction.

Therefore, the solution to the problem is 258 2\frac{5}{8} .

Answer

258 2\frac{5}{8}

Exercise #2

10ร—79= 10\times\frac{7}{9}=

Video Solution

Step-by-Step Solution

To solve the problem 10ร—79 10 \times \frac{7}{9} , we follow these steps:

  • Step 1: Multiply the whole number by the numerator. Calculate 10ร—7=70 10 \times 7 = 70 .
  • Step 2: Divide this product by the denominator. Calculate 709 \frac{70}{9} .
  • Step 3: If the result is an improper fraction, convert it to a mixed number. Divide 70 by 9, which goes 7 times with a remainder of 7. This can be expressed as the mixed number 779 7\frac{7}{9} .

Let's work through each step:
Step 1: Multiply 10 by 7 to get 70.
Step 2: Divide 70 by 9 to get 7 remainder 7.
Step 3: The proper whole number from the division is 7, with the remainder over the original fraction denominator giving us the final fraction 79 \frac{7}{9} .

Thus, the product 10ร—79 10 \times \frac{7}{9} is 779 7\frac{7}{9} .

Answer

779 7\frac{7}{9}

Exercise #3

1:14= 1:\frac{1}{4}=

Video Solution

Step-by-Step Solution

To solve the division problem 1:14 1 : \frac{1}{4} , we will follow these steps:

  • Step 1: Express the division as a fraction operation: 1รท14 1 \div \frac{1}{4} .
  • Step 2: Use the invert-and-multiply rule. Find the reciprocal of 14\frac{1}{4}, which is 44.
  • Step 3: Multiply the whole number by the reciprocal: 1ร—4=4 1 \times 4 = 4 .

Thus, after performing these operations, we find that the result of the division 1:14 1 : \frac{1}{4} is 4 4 .

Answer

4 4

Exercise #4

1:23= 1:\frac{2}{3}=

Video Solution

Step-by-Step Solution

We need to evaluate the expression 1รท23 1 \div \frac{2}{3} .

To do this, we use the principle that dividing by a fraction is equivalent to multiplying by its reciprocal. Therefore, the expression becomes:

1ร—32 1 \times \frac{3}{2} .

Next, we multiply the whole number by the reciprocal:

1ร—32=32 1 \times \frac{3}{2} = \frac{3}{2} .

To express 32\frac{3}{2} as a mixed number, we write it as:

112 1\frac{1}{2} .

Thus, the solution to the problem is 112 1\frac{1}{2} , which matches choice 3 from the options provided.

Answer

112 1\frac{1}{2}

Exercise #5

1:34= 1:\frac{3}{4}=

Video Solution

Step-by-Step Solution

To solve this problem, let's divide 11 by 34\frac{3}{4}. The solution involves converting the division into a multiplication:

  • Step 1: Recognize โ€‰1:34โ€‰\,1:\frac{3}{4}\, as the division 134\frac{1}{\frac{3}{4}}.

  • Step 2: Convert division into multiplication: 134=1ร—43\frac{1}{\frac{3}{4}} = 1 \times \frac{4}{3}.

  • Step 3: Compute the multiplication: 1ร—43=431 \times \frac{4}{3} = \frac{4}{3}.

  • Step 4: Convert 43\frac{4}{3} into a mixed number: 1131\frac{1}{3}.

Therefore, the solution to the division 1:341 : \frac{3}{4} is 113 1\frac{1}{3}

The correct answer is (113)(1 \frac{1}{3}).

Answer

113 1\frac{1}{3}

Do you think you will be able to solve it?
Start practice