Solve Mixed Number Multiplication: 1³/₉ × 2²/4

Question

139×224= 1\frac{3}{9}\times2\frac{2}{4}=

Video Solution

Step-by-Step Solution

To solve the problem 139×224 1\frac{3}{9} \times 2\frac{2}{4} , we will follow these steps:

  • Step 1: Convert each mixed number to an improper fraction.
  • Step 2: Multiply the improper fractions.
  • Step 3: Convert the resulting improper fraction back into a mixed number.

Let’s begin with each step in detail:

Step 1: Convert 139 1\frac{3}{9} and 224 2\frac{2}{4} to improper fractions.
- For 139 1\frac{3}{9} : Convert the fraction 39 \frac{3}{9} to its simplest form, which is 13 \frac{1}{3} . Then, the mixed number 113 1\frac{1}{3} becomes 1+13=33+13=43 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} .
- For 224 2\frac{2}{4} : The fraction 24 \frac{2}{4} simplifies to 12 \frac{1}{2} . Then, the mixed number 212 2\frac{1}{2} becomes 2+12=42+12=52 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} .

Step 2: Multiply the improper fractions:
43×52=4×53×2=206\frac{4}{3} \times \frac{5}{2} = \frac{4 \times 5}{3 \times 2} = \frac{20}{6}.

Simplify 206\frac{20}{6}:
Find the greatest common divisor (GCD) of 20 and 6, which is 2. Then 206=20÷26÷2=103\frac{20}{6} = \frac{20 \div 2}{6 \div 2} = \frac{10}{3}.

Step 3: Convert the improper fraction 103\frac{10}{3} back to a mixed number:
Divide 10 by 3 to get 3 with a remainder of 1, thus 103=313\frac{10}{3} = 3\frac{1}{3}.

Therefore, the product is 313 3\frac{1}{3} .

Answer

313 3\frac{1}{3}