Addition and Subtraction of Real Numbers

🏆Practice addition and subtraction of directed numbers

The addition and subtraction of real numbers are based on certain key principles. All principles will be explained using two real numbers, but certainly, the numbers in the exercise do not influence the method of resolution, therefore, these principles can be applied to any number in the exercise.

A1 - Addition and Subtraction of Real Numbers

  • When we have two real numbers with the same sign (plus or minus), this sign will remain in the result, which will, in fact, be the result of the addition. That is, if both numbers have a plus sign the result of the addition will also be positive. If both numbers have a minus sign the result of the subtraction will also be negative.
    +6+4=+10+6+4=+10
    64=10-6-4=-10

  • When we have two numbers with different signs it is crucial to determine which of the two has the greater absolute value (absolute: the distance from zero). The larger number will determine the sign of the result and, in fact, we will perform a subtraction operation.
    +64=+2+6-4=+2
    6+4=2-6+4=-2

  • When we have an exercise with a sequence of two signs (usually separated by parentheses) we will differentiate between several cases:

  • When the sequence is of two plus signs the result will also be positive
    6+(+4)=+106+(+4)=+10

  • When the sequence is of two minus signs the result will also be positive
    6(4)=+106-(-4)=+10

  • When the sequence is of minus and plus or of plus and minus the result will be negative.
    6+(4)=+26+(-4)=+2
    6(+4)=+26-(+4)=+2

Start practice

Test yourself on addition and subtraction of directed numbers!

einstein

\( (-2)+3= \)

-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555666

Practice more now

Association of Operations in Exercises with Addition and Subtraction of Real Numbers

After studying real numbers, it's time to learn how to use them in an equation. Initially, our goal with equations is to simplify them to make it easier to solve problems, and we do this by grouping operations and adding and subtracting real numbers. We just need to remember two rules:

  • When the mathematical operation and the sign of the following real number are of the same type, we group them into a sum.
  • For example: 5+(+5)5+(+5) / 5(5)5-(-5)
    5+55+5 will become
  • When the mathematical operation and the sign of the following real number are of different types, we group them into an operation that will give the difference between them. For example: 5+(5)5+(-5) / 5(+5)5-(+5)
    555-5 will become

For example:

10+(+5)(+3)(6)+(8)=10+(+5)-(+3)-(-6)+(-8)=
10+53+68=1010+5-3+6-8=10


The Elevator Method for Adding and Subtracting Real Numbers

There is a very well-known tactic that helps to understand the topic of real numbers in the best way, it's called the elevator method and it serves to clarify the addition and subtraction of real numbers. With this method, we imagine that the exercise is like a journey in an elevator that goes through the floors. Observe the following exercise:

5(+1)(8)+(3)=-5-(+1)-(-8)+(-3)=

Before using the elevator method we have to group the signs to simplify the exercise

51+83=-5-1+8-3=

Now look at the first number. In fact, you start the exercise on floor -5 and now you are asked to go down one floor. This way you reach floor -6.
Now you are asked to go up 8 floors. So, if we were on floor -6 we will arrive at floor 2. Finally, you are asked to go down 3 floors, therefore, you end up on floor -1, which is the result of the exercise

51+83=1-5-1+8-3=-1

We will give consistency to the principles outlined through the following examples:

(+3)+(+4)+(+5)=3+4+5=+12(+3) + (+4) + (+5) = 3+4+5= +12

(3)+(4)+(5)=345=12(-3) + (-4) + (-5) = -3-4-5= -12

10+2=8-10+2= -8

620=146-20= -14

(10)(100)=10+100=90(-10)-(-100)= -10+100= 90

8+(4)=84=48+(-4)= 8-4= 4


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercises on Addition and Subtraction of Real Numbers

Exercise 1

Assignment

27(7)+(6)+211= -27-\left(-7\right)+\left(-6\right)+2-11=

Solution

First, we resolve the points that have a plus or minus sign before another sign.

27+76+211= -27+7-6+2-11=

Now we solve it as a common exercise:

27+76+211=35 -27+7-6+2-11=-35

Answer

35-35


Exercise 2

Assignment

?(12)=40 \text{?}-(-12)=-40

Solution

First, let's note that the two minuses turn into a plus.

?+12=40 \text{?+}12=-40

We will move the 12 12 to the right side

?=4012 \text{?}=-40-12

Finally, we solve

?=52 \text{?}=-52

Answer:

52 -52


Do you know what the answer is?

Exercise 3

Assignment

36+6= -36+6=

Solution

We use the laws of addition and subtraction to solve accordingly.

36+6=30 -36+6=-30

Answer:

30 -30


Exercise 4

12(2)= 12-\left(-2\right)=

Solution

Pay attention to the fact that the minus and minus signs become plus, and we solve the exercise accordingly.

12+2=14 12+2=14

Answer

14 14


Check your understanding

Exercise 5

Assignment

Given:

a a Negative number

b b Negative number

What is the sum of a+b a+b ?

Solution

When we add two negative numbers, the result we will obtain is a negative number.

Answer

Negative


Do you think you will be able to solve it?

Examples with solutions for Addition and Subtraction of Directed Numbers

Exercise #1

5(2)= -5-(-2)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555666777

Video Solution

Step-by-Step Solution

Let's remember the rule:

(x)=+x -(-x)=+x

Therefore, the exercise we received is:

5+2= -5+2=

We'll locate minus 5 on the number line and move two steps to the right (since 2 is greater than zero):

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555666777

We can see that we've arrived at the number minus 3.

Answer

3 -3

Exercise #2

4+(2)= -4+(-2)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

Video Solution

Step-by-Step Solution

We'll locate minus 4 on the number line and move two steps to the left (since minus 2 is less than zero):

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

We can see that we've arrived at the number minus 6.

Answer

6 -6

Exercise #3

3+(4)= 3+(-4)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

Video Solution

Step-by-Step Solution

We will locate the number 3 on the number line, then move 4 steps to the left from it (since minus 4 is less than zero):

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

We can see that we have reached the number minus 1.

Answer

1 -1

Exercise #4

3(2)= 3-(-2)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

Video Solution

Step-by-Step Solution

Let's remember the rule:

(x)=+ -(-x)=+

We'll write the exercise in the appropriate form:

3+(2)= 3+(2)=

We'll locate the number 3 on the number line, from which we'll move 2 steps to the right (since 2 is greater than zero):

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

We can see that we've reached the number 5.

Answer

5 5

Exercise #5

14(3)= 14-(-3)=

Video Solution

Step-by-Step Solution

Let's remember the rule:

(x)=+ -(-x)=+

We'll write the exercise in the appropriate form:

14+(3)= 14+(3)=

We'll locate the number 14 on the number line, from which we'll move 3 steps to the right (since 3 is greater than zero):

0001112223334445557776668889991011121314151617

We can see that we've reached the number 17.

Answer

17 17

Start practice