Solve the following:
Solve the following:
\( \frac{a^{xy}}{a^{3xy}}-a^{2xy} \)
Solve for a:
\( \frac{a^{3b}}{a^{2b}}\times a^b= \)
Insert the corresponding expression:
\( \left(7\times2\right)^{2y-a-2}= \)
Insert the corresponding expression:
\( \left(10\times5\right)^{4y-x}= \)
Insert the corresponding expression:
\( \left(6\times9\right)^{10y}= \)
Solve the following:
Keep in mind that in the question there is a fraction containing identical terms in its numerator and denominator. Therefore, we can use the distributive property of division to solve the exercise:
We apply this to our problem and simplify the first term:
In the second step, calculate the result of the subtraction operation in the exponent to obtain:
Therefore, the correct answer is D.
Solve for a:
Insert the corresponding expression:
a'+b' are correct
Insert the corresponding expression:
Insert the corresponding expression:
A'+C' are correct
Insert the corresponding expression:
\( \left(10\times4\right)^{5a}= \)
Insert the corresponding expression:
\( 8^{ax-4}= \)
Insert the corresponding expression:
\( 10^{2x-a-1}= \)
Insert the corresponding expression:
\( 4^{3a}= \)
Insert the corresponding expression:
\( \left(4\times3\right)^{4x-y}= \)
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Insert the corresponding expression:
Complete the exercise:
\( \frac{a^{7+x}}{a^{10-2x}} \)
Insert the corresponding expression:
\( \frac{\left(xya\right)^{2x}}{\left(xya\right)^{ab}}= \)
Solve the exercise:
\( \frac{a^{2x}}{a^y}\times\frac{a^{2y}}{a^{-y}}= \)
Complete the exercise:
Insert the corresponding expression:
Solve the exercise: