Examples with solutions for Power of a Quotient Rule for Exponents: Number of terms

Exercise #1

Solve the following:


y3y6×y4y2×y12y7= \frac{y^3}{y^6}\times\frac{y^4}{y^{-2}}\times\frac{y^{12}}{y^7}=

Video Solution

Answer

y8 y^8

Exercise #2

Insert the corresponding expression:

(4×8×9)2x1= \left(4\times8\times9\right)^{2x-1}=

Video Solution

Answer

(4×8×9)2x4×8×9 \frac{\left(4\times8\times9\right)^{2x}}{4\times8\times9}

Exercise #3

Insert the corresponding expression:

(2×4×5)a(2×4×5)y= \frac{\left(2\times4\times5\right)^a}{\left(2\times4\times5\right)^y}=

Video Solution

Answer

(2×4×5)ay \left(2\times4\times5\right)^{a-y}

Exercise #4

Simplify the following:

a12a9×a3a4= \frac{a^{12}}{a^9}\times\frac{a^3}{a^4}=

Video Solution

Answer

a2 a^2

Exercise #5

Simplify the following:

b10b2:b9b5= \frac{b^{10}}{b^2}:\frac{b^9}{b^5}=

Video Solution

Answer

b4 b^4

Exercise #6

Simplify the following:

[a4a3×a8a7]:a10a8 \lbrack\frac{a^4}{a^3}\times\frac{a^8}{a^7}\rbrack:\frac{a^{10}}{a^8}

Video Solution

Answer

1 1

Exercise #7

Insert the corresponding expression:

(2×3)4×(6×7)7(2×3)2×(6×7)4= \frac{\left(2\times3\right)^4\times\left(6\times7\right)^7}{\left(2\times3\right)^2\times\left(6\times7\right)^4}=

Video Solution

Answer

(2×3)2×(6×7)3 \left(2\times3\right)^2\times\left(6\times7\right)^3

Exercise #8

Insert the corresponding expression:

a5×b3×x2a2×b×x= \frac{a^5\times b^3\times x^2}{a^2\times b\times x}=

Video Solution

Answer

a3×b2×x a^3\times b^2\times x