Examples with solutions for Power of a Quotient Rule for Exponents: Inverse formula

Exercise #1

Insert the corresponding expression:

3xy= 3^{x-y}=

Video Solution

Step-by-Step Solution

To solve the problem, we need to understand the Power of a Quotient Rule for Exponents. The rule states that:

  • If you have a power of the quotient, such as: (ab)n (\frac{a}{b})^n , it can also be expressed as: anbn \frac{a^n}{b^n}

In the given expression, we have 3xy 3^{x-y} . This can be rewritten using the inverse of the rule as:

3xy=3x3y 3^{x-y} = \frac{3^x}{3^y}

Here’s a step-by-step breakdown:

  1. Start with the expression: 3xy 3^{x-y} .
  2. Using the law of exponents, which states that amn=aman a^{m-n} = \frac{a^m}{a^n} , we rewrite the expression.
  3. Replace a a with 3 3 , m m with x x , and n n with y y to get: 3xy=3x3y 3^{x-y} = \frac{3^x}{3^y} .

The solution to the question is: 3x3y \frac{3^x}{3^y}

Answer

3x3y \frac{3^x}{3^y}

Exercise #2

Insert the corresponding expression:

206y= 20^{6y}=

Step-by-Step Solution

To solve the given expression 206y 20^{6y} and express it as a fraction aman \frac{a^m}{a^n} , we can use the Power of a Quotient Rule for Exponents. This rule states that:

  • aman=amn \frac{a^m}{a^n} = a^{m-n}

We have the expression 206y 20^{6y} which we want to represent as 20m20n \frac{20^{m}}{20^{n}} .

To achieve this, we must have:

  • mn=6y m - n = 6y

A straightforward way to do this is to choose m=10y m = 10y and n=4y n = 4y , such that:

  • 10y4y=6y 10y - 4y = 6y

This choice satisfies the equation mn=6y m - n = 6y , thus the given expression can be rewritten using the power of a quotient rule as:

206y=2010y204y 20^{6y} = \frac{20^{10y}}{20^{4y}}

This confirms that expressing 206y 20^{6y} as 2010y204y \frac{20^{10y}}{20^{4y}} is consistent with the given correct answer.

The solution to the question is: 2010y204y \frac{20^{10y}}{20^{4y}}

Answer

2010y204y \frac{20^{10y}}{20^{4y}}

Exercise #3

Insert the corresponding expression:

(2×5)92= \left(2\times5\right)^{9-2}=

Video Solution

Answer

(2×5)9(2×5)2 \frac{\left(2\times5\right)^9}{\left(2\times5\right)^2}

Exercise #4

Insert the corresponding expression:

(6×8)126= \left(6\times8\right)^{12-6}=

Video Solution

Answer

(6×8)12(6×8)6 \frac{\left(6\times8\right)^{12}}{\left(6\times8\right)^6}

Exercise #5

Insert the corresponding expression:

(4×9)5= \left(4\times9\right)^5=

Video Solution

Answer

(4×9)10(4×9)5 \frac{\left(4\times9\right)^{10}}{\left(4\times9\right)^5}

Exercise #6

Insert the corresponding expression:

(20×3)6= \left(20\times3\right)^6=

Video Solution

Answer

a'+b' are correct

Exercise #7

Insert the corresponding expression:

(15×5)3= \left(15\times5\right)^3=

Video Solution

Answer

(15×5)8(15×5)5 \frac{\left(15\times5\right)^8}{\left(15\times5\right)^5}

Exercise #8

Insert the corresponding expression:

a42= a^{4-2}=

Video Solution

Answer

a4a2 \frac{a^4}{a^2}

Exercise #9

Insert the corresponding expression:

x105= x^{10-5}=

Video Solution

Answer

x10x5 \frac{x^{10}}{x^5}

Exercise #10

Insert the corresponding expression:

y63= y^{6-3}=

Video Solution

Answer

y6y3 \frac{y^6}{y^3}

Exercise #11

Insert the corresponding expression:

x2= x^2=

Video Solution

Answer

x4x2 \frac{x^4}{x^2}

Exercise #12

Insert the corresponding expression:

a7= a^7=

Video Solution

Answer

A+B are correct

Exercise #13

Insert the corresponding expression:

(7×2)2ya2= \left(7\times2\right)^{2y-a-2}=

Video Solution

Answer

a'+b' are correct

Exercise #14

Insert the corresponding expression:

(10×5)4yx= \left(10\times5\right)^{4y-x}=

Video Solution

Answer

(10×5)4y(10×5)x \frac{\left(10\times5\right)^{4y}}{\left(10\times5\right)^x}

Exercise #15

Insert the corresponding expression:

(6×9)10y= \left(6\times9\right)^{10y}=

Video Solution

Answer

A'+C' are correct

Exercise #16

Insert the corresponding expression:

(10×4)5a= \left(10\times4\right)^{5a}=

Video Solution

Answer

(10×4)8a(10×4)3a \frac{\left(10\times4\right)^{8a}}{\left(10\times4\right)^{3a}}

Exercise #17

Insert the corresponding expression:

8ax4= 8^{ax-4}=

Video Solution

Answer

8ax84 \frac{8^{ax}}{8^4}

Exercise #18

Insert the corresponding expression:

102xa1= 10^{2x-a-1}=

Video Solution

Answer

102x10a+1 \frac{10^{2x}}{10^{a+1}}

Exercise #19

Insert the corresponding expression:

43a= 4^{3a}=

Video Solution

Answer

47a44a \frac{4^{7a}}{4^{4a}}

Exercise #20

Insert the corresponding expression:

(4×3)4xy= \left(4\times3\right)^{4x-y}=

Video Solution

Answer

(4×3)4x(4×3)y \frac{\left(4\times3\right)^{4x}}{\left(4\times3\right)^y}