Solve: X³⋅X²÷X⁵+X⁴ - Simplifying Complex Exponent Operations

Question

Solve the exercise:

X3X2:X5+X4 X^3\cdot X^2:X^5+X^4

Video Solution

Solution Steps

00:00 Simplify the following expression
00:05 According to laws of exponents when multiplying the same base with different exponents
00:08 We keep the same base and add the exponents
00:12 According to laws of exponents when dividing the same base with different exponents
00:16 We keep the same base and subtract the exponents
00:25 Continue to solve the expression in order to reduce the exponents
00:33 Any number raised to the power of 0 equals 1
00:37 This is the simplified expression and the solution to the question

Step-by-Step Solution

First, let's write the problem in an organized way and use fraction notation for the first term:X3X2X5+X4 \frac{}{}\frac{X^3\cdot X^2}{X^5}+X^4

Let's continue and refer to the first term in the above sum:

X3X2X5 \frac{X^3\cdot X^2}{X^5}

Let's deal with the numerator, first using the law of exponents for multiplying terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

and we get:

X3X2X5=X3+2X5=X5X5 \frac{X^3\cdot X^2}{X^5}=\frac{X^{3+2}}{X^5}=\frac{X^5}{X^5}

Now let's use the law of exponents for division between terms with identical bases:

am:an=aman=amn a^m:a^n=\frac{a^m}{a^n}=a^{m-n}

When in the first stage of the above formula we just wrote the same thing in fraction notation instead of using division (:), let's apply the law of exponents to the problem and calculate the result for the first term we got above:

X5X5=X55=X0 \frac{X^5}{X^5}=X^{5-5}=X^0

Now let's use the law of exponents:

a0=1 a^0=1

We can notice that this rule is actually just the understanding that dividing a number by itself will always give the result 1. Let's return to the problem and we get that the result of the first term in the exercise (meaning - the result of calculating the fraction) is:

X0=1 X^0=1 ,

let's return to the complete exercise and summarize everything said so far, we got:

X3X2X5+X4=X5X5+X4=X0+X4=1+X4 \frac{X^3\cdot X^2}{X^5}+X^4=\frac{X^5}{X^5}+X^4=X^0+X^4=1+X^4

Answer

1+X4 1+X^4