Examples with solutions for Applying Combined Exponents Rules: A power law

Exercise #1

Solve the following problem:

(34)×(32)= \left(3^4\right)\times\left(3^2\right)=

Video Solution

Step-by-Step Solution

In order to solve this problem, we'll follow these steps:

  • Step 1: Identify the base and exponents

  • Step 2: Use the formula for multiplying powers with the same base

  • Step 3: Simplify the expression by applying the relevant exponent rule

Now, let's work through each step:

Step 1: The given expression is (34)×(32) (3^4) \times (3^2) . Here, the base is 3, and the exponents are 4 and 2.

Step 2: Apply the exponent rule, which states that when multiplying powers with the same base, we add the exponents:
am×an=am+n a^m \times a^n = a^{m+n}

Step 3: Using the rule identified in Step 2, we add the exponents 4 and 2:
34×32=34+2=36 3^4 \times 3^2 = 3^{4+2} = 3^6

Therefore, the simplified form of the expression is 36 3^6 .

Answer

36 3^6

Exercise #2

3532= \frac{3^5}{3^2}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 3532=352 \frac{3^5}{3^2} = 3^{5-2}

Simplifying, we get 33 3^3

Answer

33 3^3

Exercise #3

5654= \frac{5^6}{5^4}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Answer

52 5^2

Exercise #4

Insert the corresponding expression:

6764= \frac{6^7}{6^4}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Identify the given information and relevant exponent rules.

  • Apply the quotient property of exponents.

  • Simplify the expression.

Now, let's work through each step:
Step 1: The problem gives us the expression 6764 \frac{6^7}{6^4} . The base is 6, and the exponents are 7 and 4, respectively.
Step 2: According to the rule of exponents, when dividing powers with the same base, we subtract the exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} In this case, a=6 a = 6 , m=7 m = 7 , and n=4 n = 4 .
Step 3: Applying this rule gives us: 6764=674=63 \frac{6^7}{6^4} = 6^{7 - 4} = 6^3

Therefore, the solution to the problem is 63 6^3 .

Answer

63 6^3

Exercise #5

Insert the corresponding expression:

(92)4= \left(9^2\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the provided expression: (92)4(9^2)^4.

  • Step 2: Apply the power of a power rule for exponents.

  • Step 3: Simplify by multiplying the exponents.

Now, let's work through each step:

Step 1: We have the expression (92)4(9^2)^4.

Step 2: Using the power of a power rule ((am)n=amn(a^m)^n = a^{m \cdot n}), apply it to the expression:

(92)4=92×4 (9^2)^4 = 9^{2 \times 4}

Step 3: Simplify by calculating the product of the exponents:

2×4=8 2 \times 4 = 8

Therefore, (92)4=98(9^2)^4 = 9^8.

The correct expression corresponding to the given problem is 98\boxed{9^8}.

Answer

98 9^8

Exercise #6

Simplify the following equation:

210×36×25×32= 2^{10}\times3^6\times2^5\times3^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression 210×36×25×322^{10} \times 3^6 \times 2^5 \times 3^2 using the rules of exponents. Here are the steps:

  • Step 1: Apply the product of powers property to the base 2 terms. The expression 210×252^{10} \times 2^5 simplifies to:

    210+5=2152^{10+5} = 2^{15}

  • Step 2: Apply the product of powers property to the base 3 terms. The expression 36×323^6 \times 3^2 simplifies to:

    36+2=383^{6+2} = 3^8

  • Step 3: Combine the simplified terms to form the complete simplified expression:

    215×382^{15} \times 3^8

Therefore, the simplified form of the equation is 215×382^{15} \times 3^8.

Answer

215×38 2^{15}\times3^8

Exercise #7

Simplify the following equation:

47×53×42×54= 4^7\times5^3\times4^2\times5^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify and group the terms with the same base.

  • Step 2: Apply the laws of exponents to simplify by adding the exponents of each base.

  • Step 3: Write the simplified form.

Let's work through each step:

Step 1: We are given that 47×53×42×54 4^7 \times 5^3 \times 4^2 \times 5^4 .

Step 2: First, group the terms with the same base:

47×42 4^7 \times 4^2 and 53×54 5^3 \times 5^4 .

Step 3: Use the law of exponents, which states am×an=am+n a^m \times a^n = a^{m+n} .

For the base 4: 47×42=47+2=49 4^7 \times 4^2 = 4^{7+2} = 4^9 .

For the base 5: 53×54=53+4=57 5^3 \times 5^4 = 5^{3+4} = 5^7 .

Therefore, the simplified form of the expression is 49×57 4^9 \times 5^7 .

Answer

49×57 4^9\times5^7

Exercise #8

Simplify the following equation:

75×23×72×24= 7^5\times2^3\times7^2\times2^4=

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply the laws of exponents to simplify the expression 75×23×72×24 7^5 \times 2^3 \times 7^2 \times 2^4 .

Let's follow these steps:

  • Step 1: Identify like bases.
    We have two like bases in the expression: 7 and 2.

  • Step 2: Apply the product of powers rule for each base separately.
    For the base 7: 75×72=75+2=77 7^5 \times 7^2 = 7^{5+2} = 7^7 .
    For the base 2: 23×24=23+4=27 2^3 \times 2^4 = 2^{3+4} = 2^7 .

  • Step 3: Combine the results.
    The expression simplifies to 77×27 7^7 \times 2^7 .

The simplified form of the original expression is therefore 77×27 7^7 \times 2^7 .

Answer

77×27 7^7\times2^7

Exercise #9

Simplify the following equation:

53×24×52×23= 5^3\times2^4\times5^2\times2^3=

Video Solution

Step-by-Step Solution

Let's simplify the expression 53×24×52×23 5^3 \times 2^4 \times 5^2 \times 2^3 using the rules for exponents. We'll apply the product of powers rule, which states that when multiplying like bases, you can add the exponents.

  • Step 1: Focus on terms with the same base.
    Combine 53 5^3 and 52 5^2 . Since both terms have the base 55, we apply the rule am×an=am+na^m \times a^n = a^{m+n}: 53×52=53+2=55 5^3 \times 5^2 = 5^{3+2} = 5^5

  • Step 2: Combine 24 2^4 and 23 2^3 . Similarly, for the base 22: 24×23=24+3=27 2^4 \times 2^3 = 2^{4+3} = 2^7

After simplification, the expression becomes:
55×27 5^5 \times 2^7

Answer

55×27 5^5\times2^7

Exercise #10

Simplify the following equation:

42×35×43×32= 4^2\times3^5\times4^3\times3^2=

Video Solution

Step-by-Step Solution

To simplify the given expression 42×35×43×32 4^2 \times 3^5 \times 4^3 \times 3^2 , we will follow these steps:

  • Step 1: Identify and group similar bases.

  • Step 2: Apply the rule for multiplying like bases.

  • Step 3: Simplify the expression.

Now, let's go through each step thoroughly:

Step 1: Identify and group similar bases:
We see two distinct bases here: 4 and 3.

Step 2: Apply the rule for multiplying like bases:
For base 4: Combine 424^2 and 434^3, using the rule am×an=am+na^m \times a^n = a^{m+n}.

Add the exponents for base 4: 2+3=5 2 + 3 = 5 , thus, 42×43=45 4^2 \times 4^3 = 4^5 .

For base 3: Combine 353^5 and 323^2, still using the same exponent rule.

Add the exponents for base 3: 5+2=7 5 + 2 = 7 , resulting in 35×32=37 3^5 \times 3^2 = 3^7 .

Step 3: Simplify the expression:
The simplified expression is 45×37 4^5 \times 3^7 .

Therefore, the final simplified expression is 45×37 4^5 \times 3^7 .

Answer

45×37 4^5\times3^7

Exercise #11

Simplify the following equation:

64×23×62×25= 6^4\times2^3\times6^2\times2^5=

Video Solution

Step-by-Step Solution

To simplify the equation 64×23×62×25 6^4 \times 2^3 \times 6^2 \times 2^5 , we will make use of the rules of exponents, specifically the product of powers rule, which states that when multiplying two powers that have the same base, you can add their exponents.

Step 1: Identify and group the terms with the same base.
In the expression 64×23×62×25 6^4 \times 2^3 \times 6^2 \times 2^5 , group the powers of 6 together and the powers of 2 together:

  • Powers of 6: 64×62 6^4 \times 6^2

  • Powers of 2: 23×25 2^3 \times 2^5

Step 2: Apply the product of powers rule.
According to the product of powers rule, for any real number a a , and integers m m and n n , the expression am×an=am+n a^m \times a^n = a^{m+n} .

Apply this rule to the powers of 6:
64×62=64+2=66 6^4 \times 6^2 = 6^{4+2} = 6^6 .

Apply this rule to the powers of 2:
23×25=23+5=28 2^3 \times 2^5 = 2^{3+5} = 2^8 .

Step 3: Write down the final expression.
Combining our results gives the simplified expression: 66×28 6^6 \times 2^8 .

Therefore, the solution to the problem is 66×28 6^6 \times 2^8 .

Answer

66×28 6^6\times2^8

Exercise #12

Simplify the following equation:

73×52×74×53= 7^3\times5^2\times7^4\times5^3=

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the product of powers property which states am×an=am+n a^m \times a^n = a^{m+n} .

  • Step 1: Simplify the expression by grouping the like bases. The original expression is 73×52×74×53 7^3 \times 5^2 \times 7^4 \times 5^3 .

  • Step 2: Combine the exponents for each base. For base 7: 73×74=73+4=77 7^3 \times 7^4 = 7^{3+4} = 7^7 . For base 5: 52×53=52+3=55 5^2 \times 5^3 = 5^{2+3} = 5^5 .

  • Step 3: Write the simplified expression. After combining the exponents, the expression becomes 77×55 7^7 \times 5^5 .

Thus, the solution to the problem is 77×55 7^7 \times 5^5 .

Answer

77×55 7^7\times5^5

Exercise #13

Insert the corresponding expression:

b5b2= \frac{b^5}{b^2}=

Video Solution

Step-by-Step Solution

To solve this problem, we need to simplify the expression b5b2 \frac{b^5}{b^2} using the rules of exponents.

  • Step 1: Identify the rule to apply: For any positive integer exponents m m and n n , the rule aman=amn\frac{a^m}{a^n} = a^{m-n} applies when dividing terms with the same base. In this expression, our base is b b .

  • Step 2: Apply the rule: Substitute the given exponents into the formula: b5b2=b52\frac{b^5}{b^2} = b^{5-2}

  • Step 3: Perform the subtraction: Calculate the exponent 52 5 - 2 : b52=b3b^{5-2} = b^3

Therefore, the solution to the expression b5b2 \frac{b^5}{b^2} is b3 b^3 .

Answer

b3 b^3

Exercise #14

Insert the corresponding expression:

x6x4= \frac{x^6}{x^4}=

Video Solution

Step-by-Step Solution

To solve the given expression x6x4 \frac{x^6}{x^4} , we will follow these steps:

  • Step 1: Apply the quotient rule for exponents
  • Step 2: Simplify the expression
  • Step 3: Verify by comparing with the answer choices

Now, let's work through each step:

Step 1: Apply the quotient rule for exponents. This rule states that aman=amn \frac{a^m}{a^n} = a^{m-n} when dividing powers with the same base.

Step 2: We have x6x4 \frac{x^6}{x^4} . According to the rule:

x6x4=x64=x2 \frac{x^6}{x^4} = x^{6-4} = x^2

Step 3: Verify by comparing with the answer choices:

  • Choice 1: x2 x^{-2} – Incorrect as it implies the exponents were added incorrectly.
  • Choice 2: x2 x^2 – This matches our result.
  • Choice 3: x10 x^{10} – Incorrect as it implies the exponents were added instead of subtracted.
  • Choice 4: x23 x^{\frac{2}{3}} – Incorrect as it does not match the calculation based on integer exponents.

Therefore, the correct choice is x2 x^2 , which is Choice 2.

Answer

x2 x^2

Exercise #15

Insert the corresponding expression:

(x3)4= \left(x^3\right)^4=

Video Solution

Step-by-Step Solution

To simplify the expression (x3)4 (x^3)^4 , we'll follow these steps:

  • Step 1: Identify the expression: (x3)4 (x^3)^4 .
  • Step 2: Apply the formula for a power raised to another power.
  • Step 3: Calculate the product of the exponents.

Now, let's work through each step:

Step 1: We have the expression (x3)4 (x^3)^4 , which involves a power raised to another power.

Step 2: We apply the exponent rule (am)n=amn(a^m)^n = a^{m \cdot n} here with a=xa = x, m=3m = 3, and n=4n = 4.

Step 3: Multiply the exponents: 3×4=12 3 \times 4 = 12 . This gives us a new exponent for the base x x .

Therefore, (x3)4=x12(x^3)^4 = x^{12}.

Consequently, the correct answer choice is: x12 x^{12} from the options provided. The other options x6 x^6 , x1 x^1 , and x7 x^7 do not reflect the correct application of the exponent multiplication rule.

Answer

x12 x^{12}

Exercise #16

Insert the corresponding expression:

y9y3= \frac{y^9}{y^3}=

Video Solution

Step-by-Step Solution

To solve the expression y9y3\frac{y^9}{y^3}, we will apply the rules of exponents, specifically the power of division rule, which states that when you divide like bases, you subtract the exponents.


Here are the steps to arrive at the solution:

  • Step 1: Identify and write down the expression: y9y3\frac{y^9}{y^3}.

  • Step 2: Apply the division rule of exponents, which is aman=amn\frac{a^m}{a^n} = a^{m-n}, for any non-zero base aa.

  • Step 3: Using the division rule, subtract the exponent in the denominator from the exponent in the numerator:y93 y^{9-3}

  • Step 4: Calculate the exponent: 93=6 9 - 3 = 6

  • Step 5: Write down the simplified expression:y6 y^6

Therefore, the expression y9y3\frac{y^9}{y^3} simplifies to y6 y^6 .

Answer

y6 y^6

Exercise #17

Solve the following problem:

70= 7^0=

Video Solution

Step-by-Step Solution

To solve the problem of finding 70 7^0 , we will follow these steps:

  • Step 1: Identify the general rule for exponents with zero.

  • Step 2: Apply the rule to the given problem.

  • Step 3: Consider the provided answer choices and select the correct one.

Now, let's work through each step:

Step 1: A fundamental rule in exponents is that any non-zero number raised to the power of zero is equal to one. This can be expressed as: a0=1 a^0 = 1 where a a is not zero.

Step 2: Apply this rule to the problem: Since we have 70 7^0 , and 7 7 is certainly a non-zero number, the expression evaluates to 1. Therefore, 70=1 7^0 = 1 .

Therefore, the solution to the problem is 70=1 7^0 = 1 , which corresponds to choice 2.

Answer

1 1

Exercise #18

Solve the following problem:

(3)0= \left(-3\right)^0=

Video Solution

Step-by-Step Solution

To solve this problem, let's follow these steps:

  • Understand the zero exponent rule.

  • Apply this rule to the given expression.

  • Identify the correct answer from the given options.

According to the rule of exponents, any non-zero number raised to the power of zero is equal to 11. This is one of the fundamental properties of exponents.
Now, apply this rule:

Step 1: We are given the expression (3)0(-3)^0.
Step 2: Here, 3-3 is our base. We apply the zero exponent rule, which tells us that (3)0=1(-3)^0 = 1.

Therefore, the value of (3)0(-3)^0 is 11.

Answer

1 1

Exercise #19

Reduce the following equation:

(32)4×(53)5= \left(3^2\right)^4\times\left(5^3\right)^5=

Video Solution

Step-by-Step Solution

To solve this problem, we'll employ the power of a power rule in exponents, which states that (am)n=am×n(a^m)^n = a^{m \times n}.

Let's apply this rule to each part of the expression:

  • Step 1: Simplify (32)4(3^2)^4
    According to the power of a power rule, this becomes 32×4=383^{2 \times 4} = 3^8.

  • Step 2: Simplify (53)5(5^3)^5
    Similarly, apply the rule here to get 53×5=5155^{3 \times 5} = 5^{15}.

After simplifying both parts, we multiply the results:

38×5153^8 \times 5^{15}

Thus, the reduced expression is 38×515\boxed{3^8 \times 5^{15}}.

Answer

38×515 3^8\times5^{15}

Exercise #20

Reduce the following equation:

a2×a5×a3= a^2\times a^5\times a^3=

Video Solution

Step-by-Step Solution

To reduce the expression a2×a5×a3 a^2 \times a^5 \times a^3 , we will apply the product of powers property of exponents. This property states that when multiplying expressions with the same base, we add their exponents.

  • Step 1: Identify the exponents.
    The expression involves the same base a a with exponents: 2, 5, and 3.
  • Step 2: Add the exponents.
    According to the product of powers property, a2×a5×a3=a2+5+3 a^2 \times a^5 \times a^3 = a^{2+5+3} .
  • Step 3: Simplify the expression.
    Calculate the sum of the exponents: 2+5+3=10 2 + 5 + 3 = 10 . Therefore, the expression simplifies to a10 a^{10} .

Ultimately, the solution to the problem is a10 a^{10} . Among the provided choices, is correct: a10 a^{10} . The other options a5 a^5 , a8 a^8 , and a4 a^4 do not correctly reflect the sum of the exponents as calculated.

Answer

a10 a^{10}