Examples with solutions for Applying Combined Exponents Rules: Monomial

Exercise #1

1120=? 112^0=\text{?}

Video Solution

Step-by-Step Solution

We use the zero exponent rule.

X0=1 X^0=1 We obtain

1120=1 112^0=1 Therefore, the correct answer is option C.

Answer

1

Exercise #2

(35)4= (3^5)^4=

Video Solution

Step-by-Step Solution

To solve the exercise we use the power property:(an)m=anm (a^n)^m=a^{n\cdot m}

We use the property with our exercise and solve:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Answer

320 3^{20}

Exercise #3

(62)13= (6^2)^{13}=

Video Solution

Step-by-Step Solution

We use the formula:

(an)m=an×m (a^n)^m=a^{n\times m}

Therefore, we obtain:

62×13=626 6^{2\times13}=6^{26}

Answer

626 6^{26}

Exercise #4

2423= \frac{2^4}{2^3}=

Video Solution

Step-by-Step Solution

Let's keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Remember that any number raised to the 1st power is equal to the number itself, meaning that:

b1=b b^1=b Therefore, in the problem we obtain:

21=2 2^1=2 Therefore, the correct answer is option a.

Answer

2 2

Exercise #5

3532= \frac{3^5}{3^2}=

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 3532=352 \frac{3^5}{3^2} = 3^{5-2}

Simplifying, we get 33 3^3

Answer

33 3^3

Exercise #6

5654= \frac{5^6}{5^4}=

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Answer

52 5^2

Exercise #7

9993= \frac{9^9}{9^3}=

Video Solution

Step-by-Step Solution

Note that in the fraction and its denominator, there are terms with the same base, so we will use the law of exponents for division between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Let's apply it to the problem:

9993=993=96 \frac{9^9}{9^3}=9^{9-3}=9^6 Therefore, the correct answer is b.

Answer

96 9^6

Exercise #8

(42)3+(g3)4= (4^2)^3+(g^3)^4=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(42)3+(g3)4=42×3+g3×4=46+g12 (4^2)^3+(g^3)^4=4^{2\times3}+g^{3\times4}=4^6+g^{12}

Answer

46+g12 4^6+g^{12}

Exercise #9

(ab8)2= (a\cdot b\cdot8)^2=

Video Solution

Step-by-Step Solution

We use the formula

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

a2b282 a^2b^28^2

Answer

a2b282 a^2\cdot b^2\cdot8^2

Exercise #10

(a×b×c×4)7= (a\times b\times c\times4)^7=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

a7b7c747 a^7b^7c^74^7

Answer

a7×b7×c7×47 a^7\times b^7\times c^7\times4^7

Exercise #11

(y×x×3)5= (y\times x\times3)^5=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(y×x×3)5=y5x535 (y\times x\times3)^5=y^5x^53^5

Answer

y5×x5×35 y^5\times x^5\times3^5

Exercise #12

2738=? \frac{27}{3^8}=\text{?}

Video Solution

Step-by-Step Solution

First, let's note that 27 is a power of the number 3:

27=33 27=3^3 Using this fact gives us a situation where in the fraction's numerator and denominator we get terms with identical bases, let's apply this to the problem:

2738=3338 \frac{27}{3^8}=\frac{3^3}{3^8} Now let's recall the law of exponents for division between terms without identical bases:

aman=amn \frac{a^m}{a^n}=a^{m-n} Let's apply this law to the last expression we got:

3338=338=35 \frac{3^3}{3^8}=3^{3-8}=3^{-5} where in the first stage we applied the above law and in the second stage we simplified the expression we got in the exponent,

Let's summarize the solution steps, we got:

2738=3338=35 \frac{27}{3^8}=\frac{3^3}{3^8}=3^{-5} Therefore the correct answer is answer D.

Answer

35 3^{-5}

Exercise #13

8132= \frac{81}{3^2}=

Video Solution

Step-by-Step Solution

First, we recognize that 81 is a power of the number 3, which means that:

34=81 3^4=81 We replace in the problem:

8132=3432 \frac{81}{3^2}=\frac{3^4}{3^2} Keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

3432=342=32 \frac{3^4}{3^2}=3^{4-2}=3^2 Therefore, the correct answer is option b.

Answer

32 3^2

Exercise #14

9380=? \frac{9\cdot3}{8^0}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

a0=1 a^0=1

9×380=9×31=9×3 \frac{9\times3}{8^0}=\frac{9\times3}{1}=9\times3

We know that:

9=32 9=3^2

Therefore, we obtain:

32×3=32×31 3^2\times3=3^2\times3^1

We use the formula:

am×an=am+n a^m\times a^n=a^{m+n}

32×31=32+1=33 3^2\times3^1=3^{2+1}=3^3

Answer

33 3^3

Exercise #15

(0.25)2=? (0.25)^{-2}=\text{?}

Video Solution

Step-by-Step Solution

First, let's convert the decimal fraction in the problem to a simple fraction:

0.25=25100=14 0.25=\frac{25}{100}=\frac{1}{4}

where we remembered that 0.25 is 25 hundredths, meaning:

251100=25100 25\cdot\frac{1}{100}=\frac{25}{100}

If so, let's write the problem:

(0.25)2=(14)2=? (0.25)^{-2}=\big(\frac{1}{4}\big)^{-2}=\text{?}

Now we'll use the negative exponent law:

an=1an a^{-n}=\frac{1}{a^n}

and deal with the fraction expression inside the parentheses:

(14)2=(41)2 \big(\frac{1}{4}\big)^{-2}=(4^{-1})^{-2}

when we applied the above exponent law to the expression inside the parentheses,

Next, we'll recall the power of a power law:

(am)n=amn (a^m)^n=a^{m\cdot n}

and we'll apply this law to the expression we got in the last step:

(41)2=4(1)(2)=42=16 (4^{-1})^{-2}=4^{(-1)\cdot(-2)}=4^2=16

where in the first step we carefully applied the above law and used parentheses in the exponent to perform the multiplication between the powers, then we simplified the resulting expression, and finally calculated the numerical result from the last step.

Let's summarize the solution steps:

(0.25)2=(14)2=4(1)(2)=16 (0.25)^{-2}=\big(\frac{1}{4}\big)^{-2}=4^{(-1)\cdot(-2)}=16

Therefore, the correct answer is answer B.

Answer

16 16

Exercise #16

105=? 10^{-5}=?

Video Solution

Step-by-Step Solution

First, let's recall the negative exponent rule:

bn=1bn b^{-n}=\frac{1}{b^n} We'll apply it to the expression we received:

105=1105=1100000=0.00001 10^{-5}=\frac{1}{10^5}=\frac{1}{100000}=0.00001 In the final steps, we performed the exponentiation in the numerator and then wrote the answer as a decimal.

Therefore, the correct answer is option A.

Answer

0.00001 0.00001

Exercise #17

192=? 19^{-2}=\text{?}

Video Solution

Step-by-Step Solution

In order to solve the exercise, we use the negative exponent rule.

an=1an a^{-n}=\frac{1}{a^n}

We apply the rule to the given exercise:

192=1192 19^{-2}=\frac{1}{19^2}

We can then continue and calculate the exponent.

1192=1361 \frac{1}{19^2}=\frac{1}{361}

Answer

1361 \frac{1}{361}

Exercise #18

25=? 2^{-5}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

25=125=132 2^{-5}=\frac{1}{2^5}=\frac{1}{32} We can therefore deduce that the correct answer is option A.

Answer

132 \frac{1}{32}

Exercise #19

41=? 4^{-1}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

41=141=14 4^{-1}=\frac{1}{4^1}=\frac{1}{4} We can therefore deduce that the correct answer is option B.

Answer

14 \frac{1}{4}

Exercise #20

454614=? 4^5-4^6\cdot\frac{1}{4}=\text{?}

Video Solution

Step-by-Step Solution

We'll use the law of exponents for negative exponents, but in the opposite direction:

1an=an \frac{1}{a^n} =a^{-n} Let's apply this law to the problem:

454614=454641 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} When we apply the above law to the second term from the left in the sum, and convert the fraction to a term with a negative exponent,

Next, we'll use the law of exponents for multiplying terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Let's apply this law to the expression we got in the last step:

454641=4546+(1)=45461=4545=0 4^5-4^6\cdot4^{-1} =4^5-4^{6+(-1)}=4^5-4^{6-1}=4^5-4^{5}=0 When we apply the above law of exponents to the second term from the left in the expression we got in the last step, then we'll simplify the resulting expression,

Let's summarize the solution steps:

454614=454641=4545=0 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} =4^5-4^{5}=0

We got that the answer is 0,

Therefore the correct answer is answer A.

Answer

0