Examples with solutions for Notation of a Function
Exercise #1
Is the given graph a function?
Video Solution
Step-by-Step Solution
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
Let's note that in the graph:
f(0)=2,f(0)=−2
In other words, there are two values for the same number.
Therefore, the graph is not a function.
Answer
No
Exercise #2
Determine whether the given graph is a function?
Video Solution
Step-by-Step Solution
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
We should note that for every X value found on the graph, there is one and only one corresponding Y value.
Therefore, the graph is indeed a function.
Answer
Yes
Exercise #3
Determine whether the following table represents a function
Video Solution
Step-by-Step Solution
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can see that there is a constant change in the X values, specifically an increase of 2, and the Y value remains constant.
Therefore, according to the rule, the table describes a constant function.
Answer
Yes
Exercise #4
Determine whether the following table represents a function
Video Solution
Step-by-Step Solution
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a constant change in Y values, meaning an increase of 3
Therefore, according to the rule, the table describes a function.
Answer
Yes
Exercise #5
Determine whether the data in the following table represent a constant function
Video Solution
Step-by-Step Solution
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a non-constant change in Y values - sometimes increasing by 1 and sometimes by 4
Therefore, according to the rule, the table does not describe a function